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Time Domain Simulation of 
Jack-up Dynamics Witli the 
Extremes of a Gaussian Process 
Random simulations are often used to simulate the statistics of storm-driven waves. 
Work on Gaussian linear random signals has lead to a method for embedding a large 
wave into a random sequence in such a way that the composite signal is virtually 
indistinguishable (in a rigorous statistical limit) from a purely random occurrence 
of a large wave. We demonstrate that this idea can be used to estimate the extreme 
response of a jack-up in a severe sea-state in a robust and efficient manner. Results are 
in good agreement with those obtained from a full random time-domain simulation. 

1 Introduction 
The behavior of a jack-up rig under extreme storm loading 

is complex. Among offshore engineering specialists, it is widely 
held that the most accurate methods for estimating structural 
behaviour are based on extensive random time-domain simula
tion of the ocean surface to obtain statistics of the extreme 
response in typically a 3 hour period of a severe storm. A typical 
example of this approach is given by Rodenbusch (1986). For 
a jack-up the important responses include deck displacement, 
bending moment in the legs, forces at the deck/leg connection, 
reactions at the spud-cans etc. Unfortunately, random time-do
main simulation is very time-consuming. 

For structures which respond quasi-statically, the extreme 
response always corresponds to the extreme input sea surface 
elevation. For these situations, Tromans et al. (1991) have 
shown that the time-history of the expected surface elevation 
in the region of an extremum can be derived theoretically, as
suming that the surface elevation can be modelled as a Gaussian 
random process. The resulting NewWave methodology has been 
successfully used to predict the global response of offshore 
structures, see for example Tromans and van de Graaf (1992). 

For dynamically-responding structures, the extreme response 
does not always correspond to the extreme input surface eleva
tion. The present structural displacement and the associated 
stresses are dependent not only on the present value of the 
applied load, but also on the load history and the structural 
dynamics. The extreme response might correspond to a combi
nation of a local extreme wave together with unfavourable back
ground "structural memory" response. 

To study such systems computationally, it would be advanta
geous to be able to produce time-series of surface elevation, 
each of which was constrained to include a maximum of given 
height, but otherwise was completely random. Thus, time-do
main simulations for a small number of specific constrained 
series would be as informative as a much larger series of uncon
strained simulations. 

The object of this work is to devise a technique for estimating 
the probability distribution of the extreme response in a 3 hour 
period in a robust way without simulating more than ~ 3 hours 
of real time. The response distribution should be consistent with 
that derived by "brute-force" random time-domain simulation 
(100 X 3 hours). We also require the method to enable the 
estimation of, say, 6 or 9 hour extremes with no more computa
tion than the 3 hour case. 
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Using short 0(minute) constrained simulations, we can esti
mate the distribution of largest response associated with a crest 
of given size. The distribution of large crests within a random 
sea-state is known to fit the tail of Rayleigh distribution. Convo
lution of the response distribution for each crest height with 
the distribution of the largest crests yields an estimate for the 
distribution of extreme response in a given period (typically 3 
hours). Response distributions obtained from the constrained 
simulations of •-3 hours of real-time compare well with those 
from ' 'brute-force'' random simulations (i.e., we conducted 100 
random simulations, each of 3 hour duration, took the maximum 
response in each simulation and then used the 100 individual 
maxima to provide an estimate of the complete distribution of 
the extreme response at the 1 in 3 hour level). Such simulations 
provide the only accurate benchmark to compare our method 
against. 

This methodology would be applicable to a wide class of 
problems in offshore engineering with the proviso that the re
quired extreme response should increase on average with indi
vidual crest size. 

2 Constraining a Random Process 
The local shape of large ocean waves is very variable. This 

variability in the shape of a wave, and the random motion of 
the structure in response to waves prior to the large wave, 
produces considerable variability in the peak structural response 
associated with a large wave of given elevation. For the largest 
waves in the sea-state, this shape tends to the auto-correlation 
function, has previously been referred to as NewWave (Tro
mans et al., 1991, Jonathan, Taylor and Tromans, 1994). 

Lindgren (1970) predicts exact forms for average shape of 
maxima (and minima) of a linear Gaussian random process and 
the variability around this average shape. We use Lindgren's 
results to constrain a random time series for surface elevation 
to have a large crest of a given size at a chosen time in such a 
way that, in statistical terms, the extreme is effectively indistin
guishable (in the sense described below) from a purely random 
occurrence of a crest of that height. The method is as follows: 

Consider a stationary random process: 
N 

Y{t) = Y,= Y.A„ cos (w„f) + B„ sin (w„f), (1) 

where {A„, B„} are the usual independent Normal random vari
ables with zero means. The variance of A„ is al equal to the 
variance of B„, defined by the spectral density in each frequency 

band. The total variance of the process is: c^ = 2 al The 
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second and fourth spectral moments are defined as \^<T- and 
ii*a^ respectively. The autocorrelation function is r̂  = a"^ 

N 

2 a\ cos {U)„T). 
»=i 

Lindgren (1970) gives the general form of the expected pro
file around a maximum of height a a t ; = 0. For large crests, 
this expected profile of (F,|max of a at r = 0) can be written 
as: 

£(7,1 max of a at f = 0) = a r, '•' + ^ 

+ O 
, - 7 ^ / 2 

ar, for a large (2) 

where (u'' - X.'') is a measure for narrow-banded-
ness for each crest. Similarly, the covariance of the conditioned 
process can be written in asymptotic form as: 

cov {{Y,, F,+^)|max of a at ? = 0) 

M^' + ^ r,,, + ^ ) - f O ( 7 e - ^ ' ^ ) 

rrrn 
rrr,+ for a large (3) 

The NewWave approximation by Tromans et al. (1991) mod
elled a turning point Y,\(Yo = a, Yo = 0) in a Gaussian process, 
obtaining estimates for the mean profile and covariance which 
are identical to the leading-order behavior of Lindgren solution 
valid for large crests. For realistic spectra, the NewWave form 
is adequate for a > la. Previous comparisons with measured 
waves confirm this result (Jonathan and Taylor, 1995). 

We now present a method to construct realisations of a sta
tionary Gaussian process which exhibit a local turning point of 
specified height, at a specified time. The method yields con
structed realizations with statistical properties identical to those 
of the approximation due to Tromans et al. (1991), the Berg
man et al. (1983) method for conditioned simulations, and the 
exact asymptotic form due to Lindgren. It should be noted that 
the statistical quantities are now over ensembles of simulations, 
each realization can itself be viewed as a mixture of random 
and deterministic quantities. However, the ensemble statistics 
of the constrained realization match those of purely random 
occurrences of large waves. 

Suppose that we wish to constrain the random process (1) 
by the addition of two non-random functions e{t) and/ ( r ) of 
the form: 

N 

e{t) = e, = S c„ cos (w„0, 
n=\ 

N 

/ ( / ) = / , = 1 4 Sin (w„f) (4) 
n = l 

Consider a constrained process: 

Z{t) = Z, = F ( 0 + Qe{t) + Rfit) (5) 

where the coefficients Q and R are random. We select the forms 
of Q and R, and the values c„, d„, so that Z, is constrained to 
have a value Zo = a and gradient ZQ = g (which we can later 
set to be zero), at time f = 0, Then 

2 =-!-(a - I A„), R = ^ (g ~ ^ io„A„) (6) 

N N 

where c - 2 c„, d = 2 ijj„d„, from which the statistical 
n = I n = I 

properties of f = 0, can be calculated in terms of those of A„, 
Bm • The expected value of the constrained process Z, is given 
by: 

EZ, = EY, + e,EQ + f,ER 

c d 
(7) 

The constrained autocovariance function measured at time t 
with time lag r is: 

N 

COV (Z, , Z,+r) = X O"" COS (tU„T) 

N N / 2 1 

X COS (LOJ) COS (uj„,{t + T ) ) 

X sin iu)„t) sin (a;,„(f -I- T ) ) (8) 

The variance of the process at time t can be found by setting 
T = Oin(33) : 

^ar (Z,) = a'U + ^ (^ - 2r] + j f.f^'f, + 2r, (9) 

There are clearly an infinite number of functions e, and f, 
which could be chosen to constrain the process (1) to be consis
tent with (6). The choices: 

e,/c = r,, f,/d = -f,/X^ (10) 

ensure that the both the mean and the covariance are identical 
to the leading order terms in the exact Lindgren solution, as 
well as NewWave, if the zero slope condition g = 0 is also 
applied. Thus, to leading order such a constructed peak is indis
tinguishable from a purely random occurrence of a peak of this 
size. There is, also, a strong fundamental argument for these 
choices of e, and/,. We choose to look for the functions e„f, 
which minimize the variance (9) of the constrained process Z,, 
so that it is as deterministic as possible in the region of the 
constraint. That is, the profile of Z,, will be as similar as possible 
to its expected form EZ, for each realization of the process. 
Setting the partial derivatives of the constrained variance with 
respect to e,/c and f,/d equal to zero yields the solutions given 
in (10). It is also simple to show that these choices correspond 
to a minimum of the variance as well as turning point. 

This constraining procedure can be described informally as: 

If the original random simulation has a displacement ho and 
slope go at time ^ = 0, say, then we subtract ho X NewWave 
to reduce the displacement a t ; = 0 to zero, and subtract ^0 X 
NewWave slope to make the local gradient zero. The simulation 
now has a point of zero value and zero gradient at time t = 0. 
The final step is to create the required displacement h, say, of 
the extreme signal at ? = 0 by adding back h X NewWave to 
the "squashed" signal. This produces an extreme of value h 
which is virtually indistinguishable from any large crest of 
height h present in the original signal. 

This process is illustrated in Fig. 1, showing the original and 
constrained signals, for a Pierson-Moskowitz spectrum. Very 
close to the constraint point (at f = 0) , the signals are dramati-
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Fig. 1 Original and constrained signals 

cally different. However, the modification to the original is 
strongly localized in time, reflecting the broadbanded nature of 
the wave field. 

Although, the constrained simulation method is illustrated 
here using linear representations of a random sea-state, the 
transforms of Creamer et al. (1989, 1994) can be used to modify 
the linear representations so that they become more than 2nd 
order accurate in terms of a Stokes-like expansion for the ran
dom surface elevation and resulting wave kinematics. This re
produces most of the non-Gaussianity of real sea-states such as 
the principal vertical trough-crest asymmetry, and is discussed 
by Jonathan and Taylor (1995). 

One important (unresolved) question is the existence of wave 
groups (localized packets of large waves) and the possibility 
that the structural response is maximized by the passage of a 
large group not a single large wave. If the occurrence of wave 
groups is correctly predicted by linear statistics, then we would 
expect that the constrained simulation to correctly include their 
contribution if enough constrained simulations are performed. 
However, if the occurrence of these groups are more prevalent 
or long lasting than expected based on linear random models 
for the ocean surface, these would invalid any approach based 
on linear Gaussian statistics. 

3 A Test Example—A Grossly Simplified Jack-up 
A grossly simplified model of a jack-up was defined (Fig. 

2). The complications of a real three-legged structure were 
dropped from the analysis but the important non-linear features 
of the fluid loading were retained: the Morison drag term inte
grated to the moving free-surface, causing the effective point 
of application of the load to move up and down in time. These 
make the whole problem difficult. The structure was replaced 
by a single massless uniform beam, pinned at the base and 
supporting a single point mass which is constrained to move 
horizontally. The only structural parameter discussed in this 
paper is the displacement of the mass, corresponding to the 
deck motion. However, the procedure would work just as well 
for any measure of structural response. 

The aim in this initial exercise was not to simulate a real jack-
up but, instead, to demonstrate that the constrained simulation 
procedure can reproduce results compatible with many hours of 
random simulations. Once the method has been demonstrated, 
additional complications can be added such as relative motion 
terms in the Morison fluid loading, a fully non-linear structural 
model for a real jack-up, spud-can behavior etc. 

Figure 3a shows four realizations of a 10 m crest in a random 
sea-state with Hs = 10 m. A completely random occurrence of 
a linear crest of this level has a return period of greater than 3 
hours. The corresponding deck displacement histories are 
shown in Fig. 3b, for the case where the resonant frequency is 
2x the peak in the wave spectrum, chosen so that the structure 
exhibits very strong dynamics. The structural damping was set 
at 2 percent of critical; this is low to emphasize the importance 
of the random background. Note the variability in the peak 
responses, even in sign, each of these peak responses associated 
with large crests of the same size. The duration of each short 
constrained simulation should be sufficiently long so that any 
starting transients have decayed sufficiently. For the dynamics 
calculations reported here, the large crests were imposed at 196 
sec, although this is longer than necessary. 

Figure 4 shows the results of many constrained simulations: 
the probability structure of the extreme response for a range 
of different crest elevations. The points correspond to a given 
probability of exceedance of response from 5 percent up to 95 
percent for each crest elevation. Note how broad the extreme 
response at each crest height actually is, reflecting the impor
tance of the random wave background and the resonant behavior 
of the structural model. The constant probability lines are con
structed by simple curve fitting. These are required for the con-

Mean sea-level 

//////////////////// 
Fig. 2 Single stick model of jacl<-up 
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Fig. 38 Four realizations of a constrained random wave simulation, all Fig. 3b Four examples of response to random wave simulations con
fer a P.M. spectrum with H, = 10 m and Wp = 0.4 rad/s, constrained to strained to a crest of 10 m at 196 s, ta,„tOp = 2.0, 2 percent of critical 
a crest of 10 m at 196 s damping 
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volution with the Rayleigh distribution for crest height to give 
the complete extreme response distribution in a given period. 

Figure 5 shows the probability of non-exceedance of response 
in a 3 hour period as obtained from the convolution method 
and via brute-force simulation i.e. 100 realizations, each of 3 
hour duration. The degree of agreement is good. Also shown 
is the peak response due to a deterministic NewWave event 
in isolation. The amplitude of this NewWave was chosen to 
correspond to the median (50 percent) level of the extreme 
crest height distribution for the 3 hour period. The estimate of 
the extreme response based on an isolated NewWave is in the 
lower tail of the true distribution for extreme response. There
fore, for dynamically responding structures, NewWave by itself 
is not directly useful for estimating extreme responses because 
it neglects the random background. In contrast, convolution of 
the constrained simulations, which does include the background, 
reproduces the results of random time-domain simulations well. 

4 Conclusion 

The use of constrained time domain simulation represents a 
significant advance in estimating the statistics of extreme re
sponse for dynamically responding structures. Although our first 
application is aimed at jack-ups, the technique should be equally 
applicable to other structural types: compliant towers, TLPs, 
' 'ringing'' of concrete platforms etc. There are only two require
ments: 

• the required extreme response should be associated, on 
average, with the occurrence of a large wave within a 
random sea-state, and 

• a relatively simple fluid loading model should be available 
(such as the Morison equation for drag-dominated struc
tures such as jack-ups and compliant towers). 

Having shown that constrained simulation is a viable technique 
for estimating the extreme responses of structures under non-
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Fig. 4 Fitting to response distributions for a crest of given elevation 

Fig. 5 Probability of non-exceedance estimates for extreme response in 
3 hours period. Also shown is the response due to NewWave in isolation, 
NewWave crest elevation equals median (50 percent level) of extreme 
crest height distribution in a 3 hour period. 

linear wave loading, the next step is to demonstrate its effective
ness for the analysis of real structures. A rigorous study of 
the accuracy and limitations of the method, as applied to real 
structures using modified commercial software, is currently un
der way (Harland, Vugts, Jonathan, Taylor, 1996). 
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