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Abstract

Conditionally speci�ed models are often used to describe complex mul-
tivariate data. Such models assume implicit structures on the extremes.
So far, no methodology exists for calculating extremal characteristics
of conditional models since the copula and marginals are not expressed
in closed forms. We consider bivariate conditional models that spec-
ify the distribution of X and the distribution of Y conditional on X.
We provide tools to quantify implicit assumptions on the extremes of
this class of models. In particular, these tools allow us to approximate
the distribution of the tail of Y and the coe�cient of asymptotic in-
dependence η in closed forms. We apply these methods to a widely
used conditional model for wave height and wave period. Moreover,
we introduce a new condition on the parameter space for the condi-
tional extremes model of He�ernan and Tawn (2004), and prove that
the conditional extremes model does not capture η, when η < 1.

Keywords: Multivariate Extremes, Conditional Extremes, Laplace
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1 Introduction

Extreme value theory is a topic of growing interest because of its many im-
portant applications in for example risk management (Embrechts et al., 1999)
or ocean engineering (Castillo et al., 2005). For instance, in the design or as-
sessment of o�shore facilities it is crucial to understand the distribution of
extreme sea states. Such extreme sea states are quanti�ed in terms of extreme
wave heights, wave periods possibly associated with resonant frequencies, and
extreme wind speeds. In risk management, it is important to identify which
stocks are likely to su�er extreme losses simultaneously, and to which extent
this might happen. In general, we need to use well-estabilished extreme value
methods to model such events. Traditionally, such multivariate extreme value
methods are composed of marginal models and a dependence copula, each
having parametric forms for the tails.

In other areas of statistics, however, it is common to use conditional mod-
els for high-dimensional data. Intuitively, this is the most sensible approach.
We observe X that partially explains Y . So, we de�ne a model for X and a
model for Y conditional on X. There exist many examples in the literature of
models within this conditional framework with applications in extremes, e.g.,
the conditional extreme value model (He�ernan and Tawn, 2004; Fougeres and
Soulier, 2012), the Weibull-log normal distribution (Haver and Winterstein,
2009, henceforth the Haver-Winterstein distribution), and hierarchical models
(Eastoe, 2019). Although conditional models are easy to interpret, it can be
rather di�cult to study the extremes of both Y and (X,Y ) within this class.
Recently, Engelke and Hitz (2020) developed graphical models for extremes.
However, we do not know of any literature that links existing conditional
models directly to extremal dependence measures.

There are two extremal dependence measures that are key in identifying
and measuring the degree of asymptotic dependence or asymptotic indepen-
dence (Coles et al., 1999). Identifying the correct asymptotic dependence class
is important since extrapolation of models from di�erent classes is di�erent.
To de�ne asymptotic dependence, we �rst de�ne χ ∈ [0, 1], with

χ := lim
p↑1

χ(p) := lim
p↑1

P
{
Y > F−1Y (p) | X > F−1X (p)

}
, (1)

where FX and FY denote the marginal distribution functions of X and Y . We
say that these random variables are asymptotically dependent if χ > 0, i.e.,
when the joint probability that both random variables are large is of the same
magnitude as when one is large. If the coe�cient of asymptotic dependence
χ = 0, we say that the variables are asymptotically independent. In this case,
χ does not give us information on the level of asymptotic independence. So,
we additionally de�ne the coe�cient of asymptotic independence η ∈ (0, 1]
(Ledford and Tawn, 1996) to satisfy for u→∞

P
{
X > F−1X [FE(u)] , Y > F−1Y [FE(u)]

}
∼ L (eu) e−u/η, (2)
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where FE(u) = 1 − exp(−u) is the distribution function of a standard expo-
nential, and where L is a slowly varying function. Here, we write f(x) ∼ g(x)
as x→∞ when f(x)/g(x)→ 1 as x→∞. We rewrite de�nition (2) as

η := lim
p↑1

η(p) := lim
p↑1

log(1− p)
log [(1− p)χ(p)]

. (3)

If the variables are asymptotically dependent, then η = 1; if the variables are
asymptotically independent, then η ∈ (0, 1) or η = 1 and L(u)→ 0 as u→∞.
The coe�cient of asymptotic independence η describes the rate of decay to
zero of the joint exceedance probability P{X > F−1X (p), Y > F−1Y (p)} as p
tends to 1, see Ledford and Tawn (1996).

It is relatively straightforward to calculate the two extremal dependence
measures for distributions when the joint distribution function is speci�ed
parametrically, e.g., a bivariate extreme value distribution (Ledford and Tawn,
1996), or when the joint density function is speci�ed parametrically (Nolde and
Wadsworth, 2021), e.g., a multivariate normal distribution. In this paper, we
consider models speci�ed within the conditional framework. For these cases,
it is not straightforward to calculate η analytically, and numerical estimation
can be di�cult since convergence of η(p) to η can be exceptionally slow. We
set up methodology to calculate η in closed form within this framework and
demonstrate the techniques on two widely used examples speci�ed below. We
support these limiting results using numerical integration.

First, we consider the model described in Haver and Winterstein (2009),
used to explain the dependence between extreme signi�cant wave height and
their associated wave periods. Secondly, we investigate the model of He�ernan
and Tawn (2004). This is a conditional model which describes the distribution
of Y | X for large X, where both X and Y are on standard margins. As
the He�ernan-Tawn model focusses on the averages and deviations of Y |
X for large X, and not necessarily on the tails of Y | X for large X, it
cannot be expected to model η correctly. Indeed, we will show that η of (X,Y )
can be di�erent to η from the associated exact He�ernan-Tawn model. More
theoretical examples, like Y | X := XβZ and Y | X := |Z||X| where Z is
some random variable independent of X, can be found in the Ph.D. thesis of
Tendijck (2023).

The layout of the article is as follows. In Section 2, we demonstrate novel
techniques for calculating the coe�cient of asymptotic independence η and il-
lustrate the techniques with some examples. In Sections 3 and 4, we apply these
techniques to the Haver-Winterstein model and the He�ernan-Tawn model,
respectively. Proofs are found in the Appendix and Supplementary Material.
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2 Methodology

2.1 Motivation

We aim to investigate the extremal properties of the bivariate distribution of
(X,Y ), for which the distribution of X and the distribution of Y | X are
speci�ed. In particular, we aim to investigate the tail of the distribution of Y
and joint extremes of X and Y via the coe�cient of asymptotic independence
η. Deriving such extremal quantities in closed form within this class is not
trivial. In this section, we provide a set of tools, derived from the Laplace
approximation, to calculate such properties for any conditional model.

First, we consider the tail of the distribution of Y . Because the distributions
of X and Y | X are speci�ed, it is natural to write

1− FY (y) := P(Y > y) =

∫ ∞
−∞

P(Y > y | X = x)fX(x) dx,

where fX is the density ofX. In general, this integral is analytically intractable.
In Section 2.2, we present the tools with which we can derive the asymptotic
properties of this integral as y tends to the upper end point of the distribution
of Y .

To derive the coe�cient of asymptotic independence, we additionally need
the inverse distribution F−1Y (p) for values of p close to 1, and

P(X > F−1X (p), Y > F−1Y (p)) =

∫ ∞
F−1
X (p)

P(Y > F−1Y (p) | X = x)fX(x) dx.

This integral is also intractable in general; the tools from Section 2.2 can again
be applied to derive the asymptotic decay to 0 as p tends to 1.

2.2 Extension to the Laplace approximation

Here we present our theory to calculate asymptotic rates of decay of integrals,
that can be used to compute extremal properties, such as η, of conditional
models. We �rst recall the Laplace approximation, a technique commonly used
in Bayesian inference for approximating intractable integrals. This asymptotic
approximation forms the basis of our main result. We then state that result,
and illustrate key di�erences with the Laplace approximation by comparing
examples.

Proposition 1 (Laplace approximation) Let a < b. Suppose g : [a, b] → R is twice
continuously di�erentiable and assume there exists a unique x∗ ∈ (a, b) such that
g(x∗) = maxx∈[a,b] g(x) and g

′′(x∗) < 0. Then∫ b

a
eng(x)−ng(x

∗) dx ·
√
n(−g′′(x∗)) ∼

√
2π

as n→∞.
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The main disadvantage of the Laplace approximation is that it can only be
used to approximate integrals where the integrands are of the form f(x)n,
where f(x) = eg(x) is a positive function. However, we are interested in calcu-
lating integrals with integrand fn(x) = egn(x), for some sequence of functions
{gn}n∈N. Now we extend the Laplace approximation under the assumptions
that: (i) the analogue x∗n of x∗ is allowed to depend on n; (ii) x∗n can be equal
to either a or b; (iii) g′′n(x∗n) does not need to be negative.

Proposition 2 Let I ⊆ R be connected with non-zero Lebesgue mass, k0 ≥ 1 an
integer, and gn ∈ Ck0(I) a sequence of real-valued (at least) k0-times continuously

di�erentiable functions de�ned on I. For 1 ≤ i ≤ k0, we de�ne g
(i)
n as the ith

derivative of gn. We assume that for all n ∈ N, there exists a unique x∗n ∈ I such
that gn(x

∗
n) > gn(x) for all x ∈ I \{x∗n}. Moreover, we assume that k0 is the smallest

integer such that g
(k0)
n (x∗n) < 0 and limn→∞ g

(i)
n (x∗n)[−g

(k0)
n (x∗n)]

−i/k0 = 0 for all
1 ≤ i < k0. Additionally, assume that there exists a δ such that for all |x| < δ

lim
n→∞

g
(k0)
n

{
x∗n + x

[
−g(k0)n (x∗n)

]− 1
k0

}
g
(k0)
n (x∗n)

<
3

2
.

Then, for n > N , there exists a constant C1 > 0 such that∫
I
egn(x)−gn(x

∗
n) dx ·

[
−g(k0)n (x∗n)

] 1
k0 ≥ C1.

The proof of Proposition 2 can be found in Appendix A. One disadvantage
of our extension is that it only gives an asymptotic lower bound. In many
practical applications, an upper bound can be found directly using inequalities
like that in equation (8).

2.3 Examples

We demonstrate the use of Proposition 2 in three cases. Firstly, let gn(x) =
−nxp for n ∈ N, p ∈ Z≥1 and I = [0,∞). It is then valid to apply Proposition 2
with x∗n = 0 and k0 = p. Applying the proposition yields a constant C1 > 0
such that as n→∞

n
1
p

∫ ∞
0

e−nx
p

dx ≥ C1.

This lower bound is tight as we now verify for p ≥ 2, since for p = 1 the
statement holds trivially. For p ≥ 2, we use the variable transformation y = nxp

to give as n→∞

n
1
p

∫ ∞
0

e−nx
p

dx =
1

p

∫ ∞
0

y−
1
p−1e−y dy = Γ

(
1

p
+ 1

)
.

After recognizing that the integral over [0,∞) is equal to half of the integral
over R, we see that Proposition 1 is also applicable, but only in the special
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case p = 2. In this case, Proposition 1 additionally gives as n→∞∫ ∞
0

e−nx
2

dx =
1

2

∫ ∞
−∞

e−nx
2

dx ∼
√
π

2
√
n
.

Secondly, let gn(x) = −x − nx2 and I = [0,∞). Now Proposition 1 is not
applicable since no function g(x) exists for which gn(x) = ng(x) holds. Note
that Proposition 2 is also not applicable with k0 = 1, since x∗n has to be equal
to 0 and for x 6= 0

lim
n→∞

g′n (0 + x · n)

g′n(0)
= lim
n→∞

1 + 2n2x =∞,

contradicting one of the assumptions. Proposition 2 is applicable with k0 = 2,
yielding a constant C2 > 0 such that as n→∞

√
n

∫ ∞
−∞

e−x−nx
2

dx ≥ C2.

Similar to our �rst example, this lower bound is tight since we can also directly
calculate as n→∞

√
n

∫ ∞
−∞

e−x−nx
2

dx =
√
n

∫ ∞
−∞

e−n(x+ 1
2n )

2
+ 1

4n dx ∼
√
π.

Finally, let αn > 0, βn > 0 for n ∈ N and assume lim inf αn > 0. De�ne
gn(x) = αn log x − βnx. Using an argument similar to that in the second
example, we see that Proposition 1 is not applicable. However Proposition 2
is applicable with k0 = 2, yielding a constant C3 > 0 such that as n→∞

α
−αn− 1

2
n βαn+1

n eαn
∫ ∞
0

xαne−βnx dx ≥ C3.

This bound is also tight, which can be seen from recognizing the density of a
gamma distribution in the expression above, and applying limit results for the
gamma function.

3 Haver-Winterstein model

Haver and Winterstein (2009) introduce the Haver-Winterstein (HW) distri-
bution for signi�cant wave height HS and wave period Tp in the North Sea.
Their model is set up in the conditional framework: they specify a class of dis-
tributions for HS and a class of distributions for Tp | HS . Variations of this
approach have been widely applied in ocean engineering with over 150 cita-
tions, 25 of which correspond to 2021, see for example Drago et al. (2013).
However we are not aware of any literature quantifying χ and η in closed form
for the HW distribution; we now show how to calculate these.
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The HW distribution is formulated as

fX(x) =


1√

2παx
exp

{
− (log x−θ)2

2α2

}
, for 0 < x ≤ u,

k
λk
xk−1 exp

{
−
(
x
λ

)k}
, for x > u.

(4)

where u, α, k, λ > 0 and θ ∈ R. In particular, the parameters are constrained
such that fX is continuous at u and integrates to 1. Secondly, they take Y | X
to be conditionally log-normal

fY |X(y | x) =
1√

2πσ(x)y
exp

{
− (log y − µ(x))2

2σ(x)2

}
, for x, y > 0, (5)

where µ(x) := µ0 + µ1x
µ2 and σ(x) := [σ0 + σ1 exp(−σ2x)]

1/2
with µ0 ∈

R, µ1, µ2, σ0, σ1, σ2 > 0.
Model parameter estimates (Haver and Winterstein, 2009) from data ob-

served in the northern North Sea are given in the Supplementary Material.
For ease of presentation, we make two assumptions about the parameter
space of the HW distribution that are consistent with parameter estimates
(µ̂2, k̂) = (0.225, 1.55) from Haver and Winterstein (2009). Speci�cally, we
make the following restrictions: 0 < µ2 < 0.5 and 2µ2 < k. These assump-
tions reduce the number of cases to be considered signi�cantly whilst including
realistic domains for the parameters as considered by practioners.

We now show how to use Proposition 2 to calculate the extremal depen-
dence measures χ and η for the bivariate random vector (X,Y ) distributed
according to the HW distribution in the restricted parameter space. Calcula-
tion of η is split into two steps. In the �rst step, we calculate the distribution
function FY of Y and in the second we evaluate the rate of decay of joint
probabilities P{X > F−1X [FE(u)], Y > F−1Y [FE(u)]} as u tends to in�nity.

We have

P(Y > y) =

∫ ∞
0

P(Y > y | X = x)fX(x) dx =

∫ ∞
0

Φ

(
log y − µ(x)

σ(x)

)
fX(x) dx,

(6)
where Φ is the survival function of a standard Gaussian. This integral is ana-
lytically intractable but we can calculate its limiting leading order behaviour
in closed form. Proposition 2 gives a lower bound and an upper bound of the
same order as the lower bound is then found directly. For ease of notation, we
denote the integrand by

gy(x) := Φ

(
log y − µ(x)

σ(x)

)
fX(x) (7)

for x > 0. In Figure 1, we plot gy for various values of y. From the �gure, we
note that gy has two local maxima for su�iciently large y. These are x

∗
y, which

converges to zero, and x∗∗y , which diverges to in�nity. This observation implies
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Figure 1 The function log gy from equation (7) for y = 10, 20, 30, 40, 50, 100 with
parameters as reported in Haver and Winterstein (2009), see Supplementary Material.

that we cannot apply Proposition 2 directly in this case. We therefore proceed
as follows: (i) calculate x∗y and x∗∗y ; (ii) partition the interval of integration
into intervals I1 and I2, where x

∗
y ∈ I1 and x∗∗y ∈ I2, such that the conditions

of Proposition 2 hold for both intervals, and then apply the proposition on
each interval; (iii) combine the two lower bounds found to get a lower bound
for integral (6); (iv) derive a limiting upper bound for integral (6) of the same
order as the lower bound.

In the Supplementary Material, we derive that as y →∞

x∗y ∼
(

σ1σ2 · log y

2µ1µ2(σ0 + σ1)

)− 1
1−µ2

and x∗∗y ∼
(
λkµ1µ2 · log y

kσ0

) 1
k−µ2

.

From Figure 1, we recognize that gy(x∗y) > gy(x∗∗y ) as y → ∞. We show that
this holds analytically in the Supplementary Material when 2µ2 < k. We now
apply Proposition 2 and �nd that k0 = 2 is appropriate. The proposition then
gives a lower bound for integral (6) around x∗y as y →∞ of

P(Y > y) ≥ exp

{
− log2 y

2(σ0 + σ1)
+O(log y)

}
.

Finally, since gy(x∗y) > gy(x∗∗y ), it is straightforward to show as y →∞ that

P(Y > y) ≤ exp

{
− log2 y

2(σ0 + σ1)
+O(log y)

}
using the inequality

P(Y > y | X = x)fX(x) ≤ gy(x∗y)1{x ∈ [0, x∗∗y ]}+ fX(x)1{x > x∗∗y }. (8)

We now can calculate η and show that χ = 0. To that end, we �rst need to cal-
culate the inverse probability integral transform, transforming Y to standard
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exponential margins; i.e., we need F−1Y [FE(u)]. Next, we need to evaluate the
asymptotic behaviour of P{Y > F−1Y [FE(u)], X > F−1X [FE(u)]} as u→∞. To
evaluate F−1Y ◦ FE , we �rst calculate for y →∞

F−1E (FY (y)) = − log(1− FY (y)) =
log2 y

2(σ0 + σ1)
+O(log y).

We invert this expression by solving F−1E (FY (y)) = u for log y. This yields

log y =
√

2σ0 + σ1)u+O(1) as y →∞. We can now write down an asymptotic
expression for χ(u) as u→∞

χ(u) := P
{
F−1E [FY (Y )] > u, F−1E [FX(X)] > u

}
= P

{
log Y >

√
2(σ0 + σ1)

√
u+O(1), (X/λ)k > u

}
=

∫ ∞
λu1/k

Φ

(√
2(σ0 + σ1)

√
u+O(1)− µ(x)

σ(x)
| X = x

)
· kx

k−1

λk
exp

{
−
(x
λ

)k}
dx.

In the Supplementary Material, we show that Proposition 2 is applicable for
this integral with k0 = 1 and x∗u = λu1/k. Moreover, we derive directly an
upper bound of the same order, obtaining

χ(u) = exp

{
−
(

2 +
σ1
σ0

)
u+O

(
u1/2+µ2/k

)}
as u→∞. Hence, χ = 0 and

η =

(
2 +

σ1
σ0

)−1
.

In particular, for the parameter estimates from Haver and Winterstein (2009),
the value of η ∈ (0, 1/2) implies that the distribution exhibits negative
asymptotic independence (Ledford and Tawn, 1996).

4 He�ernan-Tawn model

In multivariate extreme value theory, the conditional extreme value model of
He�ernan and Tawn (2004), henceforth denoted the HT model, is widely stud-
ied and applied to extrapolate multivariate data. The HT model has been cited
over 600 times, and is applied e.g. in oceanography (Ross et al., 2020), �nance
(Hilal et al., 2011), and spatio-temporal extremes (Simpson and Wadsworth,
2021). The HT model is a limit model and its form is motivated by derived lim-
iting forms from numerous theoretical examples. Keef et al. (2013) assume that
for (X,Y ) on standard Laplace margins there exist parameters α ∈ [−1, 1],
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β < 1 and a non-degenerate distribution function H such that for x > 0, z ∈ R

lim
u→∞

P
(
Y − αX
Xβ

≤ z, X − u > x | X > u

)
= exp(−x)H(z). (9)

In the limit of u → ∞, this formulation implies that (Y − αX)X−β and
(X − u) are independent conditional on X > u, and are distributed as H and
a standard exponential, respectively. As is common practice in extreme value
theory, the HT model assumes that the corresponding limiting family in (9)
holds exactly at a �nite level. Thus the HT model is speci�ed for x > u, where
u is a su�ciently high threshold such that the limit representation in (9) is
considered a good approximation. Let (X,Y ) be a random vector such that
X and Y both have standard Laplace margins. Moreover, let α, β ∈ [0, 1) and
assume that for x > u > 0

P(Y > y | X = x) = H

(
y − αx
xβ

)
(10)

holds for all y ∈ R where H = 1−H is some non-degenerate survival function.
In this case, we say that (X,Y ) are distributed according to an exact version
of the HT model. We consider two cases for H, corresponding to �nite and
in�nite upper end points. If H has a �nite upper end point zH , calculations
for η are trivial. Indeed, when X = x, Y cannot be larger than αx + xβzH .
In particular, as u → ∞, Y > u is equivalent to X > u/α + O(uβ). Hence as
u→∞

P(X > u, Y > u) ∼ P
{
X > u,X > u/α+O(uβ)

}
∼ P

{
X > u/α+O(uβ)

}
= exp

{
−u/α+O(uβ)

}
.

Therefore, η = α when α > 0 and otherwise does not exist.
Now assume that H has an in�nite upper end point. To make calculations

tractable, we parameterise H as

H (z) = exp
{
−γzδ + o

(
zδ
)}

1{z > 0}+ 1{z ≤ 0} (11)

for γ > 0, δ ≥ 1. For simplicity, we do not consider potential negative argu-
ments for H since the precise form of its lower tail is not relevant to the current
work. Parameterisation (11) covers most non-trivial cases for the upper tail
including Gaussian, Weibull and exponential tails; see examples in He�ernan
and Tawn (2004). Moreover if the tail of H is heavier than that of the exponen-
tial, Y cannot possibly possibly follow a standard Laplace distribution. This
links to the restricton δ ≥ 1. For illustration, we set o(zδ) = 0 in equation (11).
The resulting Weibull survival function is a suitable choice for H, since it has
an extreme value tail index of 0, but a varying tail thickness controlled by δ.
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α β γ δ η

(0, 1) [0, 1) (0,∞)
(
(1− β)−1,∞

)
α

(0, 1) (0, 1) (0,∞) (1− β)−1

(
γ(1−αc)δ

cδ−1 + c

)−1

(0, 1) 0 (1/α,∞) 1 α
(0, 1) 0 (0, 1/α] 1 1/(γ + 1− γα)
0 (0, 1) (0,∞)

(
(1− β)−1,∞

)
Not de�ned

0 (0, 1) (0, (1− β)/β] (1− β)−1 1/(γ + 1)

0 (0, 1) [(1− β)/β,∞) (1− β)−1 γ−1/δ(δ − 1)1−1/δ/δ

Table 1 Values of η for model (10) with H as in (11) for di�erent ranges of parameter
combinations, where c = max{1, c0} ∈ [1, 1/α) for c0 given in equation (12).

Figure 2 Visualisation of c0 from equation (12) for γ = 1, 1.5, 2, 5 and δ = (1−β)−1. The
region corresponding to c0 ∈ (0, 1) is shown in red; the region corresponding to c0 ∈ (1, 1/α)
is shown in green.

Proposition 3 If (X,Y ) follows distribution (10) with H as in (11) with o(zδ) = 0,
then δ ≥ (1− β)−1.

The proof of Proposition 3 is found in Appendix A. Following similar argu-
ments to those used in the proof of Proposition 3, we calculate χ and η for any
combination of the parameters (α, β, δ, γ) in their speci�ed parameter space.
We collect results in Table 1. In the Supplementary Material, we only give de-
tails of the η calculations when α, β ∈ (0, 1), γ > 0 and δ = (1− β)−1. For the
other �ve cases in Table 1, we state results without proof. In particular, the
argument underpinning the η calculation when δ > (1− β)−1 is similar to the
argument used when H has a �nite upper end point. In this case, η = α when
α > 0 and when α = 0, η is not de�ned.

In Table 1, it is convenient to refer to c = max{1, c0} ∈ [1, 1/α) where
c0 ∈ (0, 1/α) satis�es

γ(1− αc0)δ−1 (δ − 1 + αc0) = cδ0. (12)

To give some intuition on the value of c, in Figure 2 we sketch the region of
the parameter space corresponding to c = 1 (in red) for di�erent values of γ.
Finally in Figure 3 we visualise η for a set of di�erent parameter combinations
with δ = (1− β)−1.

We note the following interesting �ndings. The parameter η is non-
decreasing with increasing α and with increasing β. Parameter combinations
(α, β, γ, δ) exist for which α, β > 0 but η < 0.5. Hence, there are cases for



Springer Nature 2021 LATEX template

12 Extremal characteristics of conditional models

Figure 3 The value of η as a function of α, β and γ with δ = (1 − β)−1 from the HT
model (10) and (11).

which Y increases with X but the extremes of (X,Y ) are negatively associated
as measured by η (Ledford and Tawn, 1996).

Finally we note that the He�ernan-Tawn model is not η invariant, i.e.,
when the HT model occurs in the limit of the distribution of (X,Y ), then
η for (X,Y ) is not necessarily the same as η for the associated exact HT
model. To illustrate this, let (X,Y ) follow an inverted bivariate extreme value
distribution with a logistic dependence structure (Ledford and Tawn, 1996) on
Laplace margins with parameter ξ ∈ (0, 1], such that

P(X > x, Y > y) = exp

{
−
[
t1/ξx + t1/ξy

]ξ}
, (13)

where tx := log 2 − log[2 − exp(x)] for x < 0 and tx := log 2 + x for x > 0,
with ty similarly de�ned. It is straightforward to derive that in the limit, the
He�ernan-Tawn model (10) is applicable to (X,Y ) with H as in equation (11)
and o(zδ) = 0. Speci�cally,

lim
x→∞

P
(
Y Xξ−1 > z | X = x

)
= exp

(
−ξz1/ξ

)
.

Now let (XHT , YHT ) be distributed following our exact version of the HTmodel
associated with (X,Y ). That is, for XHT < u, we have (XHT , YHT ) = (X,Y ).
For XHT ≥ u, XHT −u is standard exponentially distributed, and YHT | XHT

follows model (10) with H as in (11) with parameters (α, β, γ, δ) = (0, 1−
ξ, ξ, 1/ξ) and o(zδ) = 0. In this case γ < (1 − β)/β, and Table 1 implies
that the coe�cient of asymptotic independence ηHT of (XHT , YHT ) is equal to
1/(ξ+1). In contrast, it is straightforward to derive directly from de�nition (13)
that η of (X,Y ) is equal to 2−ξ. Hence ηHT 6= η when ξ ∈ (0, 1).

Finally we illustrate numerically the di�erences between η, ηHT and their
�nite level counterparts η(p) and ηHT (p) for p ∈ (0, 1). For de�niteness, we let
(X,Y ) follow distribution (13) with ξ = 0.35. We simulate a sample {(xi, yi) :
i = 1, . . . , n} of size n = 10, 000. First we empirically estimate η(p) from
equation (3) for p ∈ (0, 1) and calculate pointwise 95% con�dence intervals
using the binomial distribution. Next we note that η(p) = η for p ∈ (0.5, 1).
Finally we calculate the corresponding ηHT (p) for p near 1 using numerical
integration.
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Figure 4 Coe�cients of asymptotic independence η (red dashed) for distribution (13) with
ξ = 0.35, and the corresponding value for the exact limiting HT model ηHT (green dashed),
and its �nite level counterpart ηHT (p) (black dashed). Empirical estimates η̂(p) for a sample
of size 10, 000 with pointwise con�dence intervals are shown in blue. Left and right hand
panels are the same except for the scale of the x-axis, set on the right to illustrate the
behaviour of ηHT (p) for p near 1.

Results are shown in Figure 4. Left and right hand plots are the same
except for the scale of the x-axis, illustrating the behaviour of ηHT (p) for p
near 1. Reassuringly, the true η of the underlying model (red dashed) falls
within the 95% con�dence interval for its empirical counterpart η̂(p) (blue).
Further, ηHT (p) (black dashed) converges to ηHT (green dashed). We note
that ηHT (p) varies as a function of p and only seems to asymptote for p >
1 − exp(−50)/2 ≈ 1 − 9.6 · 10−23. Finally, since ηHT < η, we would expect
that ηHT (p) would underestimate η, but it turns out this is only the case for
p > 1− exp(−7.5)/2 ≈ 0.9997.

Supplementary information. In the Supplementary Material, we give
details of the mathematical derivations corresponding to the case studies.
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Mackay of Exeter University and David Randell of Shell. This article is based
on work completed while Stan Tendijck was part of the EPSRC funded STOR-
i centre for doctoral training (grant no. EP/L015692/1), with part-funding
from Shell Research Ltd.

Appendix A Proofs

Proof of Proposition 2. We prove that as n → ∞, there exists a constant
C1 > 0 such that

In :=

∫
I

egn(x)−gn(x
∗
n) dx ·

(
−g(k0)n (x∗n)

) 1
k0 ≥ C1.
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To bound In from below, we �rst simplify its expression by applying the

variable transformation y = tn(x) := (x− x∗n)
(
−g(k0)n (x∗n)

)1/k0
and de�ning

hn(y) := gn

(
x∗n + y

(
−g(k0)n (x∗n)

)− 1
k0

)
, for y ∈ I ′n := {tn(x) : x ∈ I} .

Then, the integral In becomes

In =

∫
I′n

ehn(y)−hn(0) dy.

We note that for all n ∈ N, we have 0 ∈ I ′n, hn ∈ Ck0(I ′n), and hn(0) > hn(y)
for all y ∈ I ′n \ {0}. Moreover, we have for y ∈ I ′n, i = 1, . . . , k0,

h(i)n (y) = g(i)n

(
x∗n + y

(
−g(k0)n (x∗n)

)−1/k)
·
(
−g(k0)n (x∗n)

)−i/k0
.

Hence, h
(k0)
n (0) = −1 and limn→∞ h

(i)
n (0) = 0 for all 1 ≤ i < k0. Using Taylor's

theorem, there exists a function ξ(y) taking on a value between 0 and y such
that

hn(y)− hn(0) =

k0−1∑
i=1

yi

i!
h(i)n (0) +

yk0

k0!
h(k0)n (ξ(y)).

Let ε > 0. Because limn→∞ h
(i)
n (0) = 0 for all i < k0, we can �nd an N0 ∈ N

such that for all n > N0, we have maxi=1,...,k0−1 |h
(i)
n (0)| < ε. Moreover, from

the assumptions of the proposition, we can �nd a δ > 0 and an N1 ∈ N such

that for all n > N1, h
(k0)
n (y) > −3/2 for y ∈ (−δ, δ)∩I ′n. For n > max{N0, N1},

hn(y)− hn(0) > −|y|ε− |y|
2

2!
ε− · · · − |y|k0−1

(k0 − 1)!
ε− 3|y|k0

2k0!
> −εeδ − 3|y|k0

2k0!

for y ∈ (−δ, δ) ∩ I ′n. Hence, we derive a lower bound

In ≥ e−εe
δ

∫
I′n∩(−δ,δ)

e−
3|y|k0
2k0! dy =: C1.

From the connectedness of I and 0 ∈ I ′n, we conclude that I ′n ∩ (−δ, δ) has
positive mass under the Lebesgue measure. Hence, C1 ∈ (0,∞). �

Proof of Proposition 3. Let (X,Y ) be a random vector such that X and Y both
have standard Laplace margins. Moreover, assume that there exist−1 ≤ α ≤ 1,
0 ≤ β < 1 and u > 0 such that for x > u

P(Y > y | X = x) = H

(
y − αx
xβ

)
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holds for all y ∈ R with

H (z) = exp(−γzδ)1{z > 0}+ 1{z ≤ 0},

where γ, δ > 0. We now derive that δ ≥ (1 − β)−1 must hold. Since Y is
distributed as a standard Laplace, we have for y > 0

exp(−y)

2
= P(αX +XβZ ≥ y, X ≥ u)P(X ≥ u) + P(Y ≥ y, X < u)

≥ P(αX +XβZ ≥ y, X ≥ u) ≥ P(XβZ ≥ y, X ≥ u)

=

∫ ∞
u

P
(
Z ≥ y

xβ

)
fX(x) dx =

1

2

∫ ∞
u

exp

(
−γy

δ

xβδ
− x
)

dx =: Ĩy.

We will show that 2 exp(y)Ĩy > 1 as y →∞ if δ < (1−β)−1, which thus would
contradict with the marginal distribution of Y . This result holds trivially for
β = 0. So, for now, we let β > 0. We will prove this asymptotic inequality by
applying Proposition 2, with k0 = 2, to bound Ĩy from below.

First de�ne I := [u,∞) as the integration domain, and

gy(x) := exp

(
−γy

δ

xβδ
− x
)
1{x ∈ I}, and hy(x) :=

(
−γy

δ

xβδ
− x
)
1{x ∈ I}.

Next we �nd the mode x∗y of gy(x). We assume that x∗y lies in the interior of

I such that h′y(x∗y) = 0, which implies that βδγyδ(x∗y)−βδ−1 = 1. So, x∗y =

(βδγ)
1

βδ+1 y
δ

βδ+1 , which lies in the interior of I for su�ciently large y. We now
compute

gy(x∗y) = exp

(
− γyδ

(x∗y)βδ
− x∗y

)
= exp

(
−Ay

δ
βδ+1

)
with A := γ (βδγ)

− βδ
βδ+1 + (βδγ)

1
βδ+1 . Secondly,

h′′y(x∗y) = −βδ(βδ + 1)(x∗y)−βδ−2γyδ = −(βδ + 1) (βδγ)
− 1
βδ+1 y−

δ
βδ+1 .

Using these expression, we can now check that the assumptions from Proposi-
tion 2 with k0 = 2 are satis�ed. First we note that h′y(x∗y)(−h′′y(x∗y))−1/2 = 0.
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Next let C > 0 and |x| ≤ C, then

lim
y→∞

h′′y

(
x∗y + x√

−h′′y (x∗y)

)
h′′y(x∗y)

= lim
y→∞

−βδ(βδ + 1)

(
(βδγ)

1
βδ+1 y

δ
βδ+1 + x√

(βδ+1)(βδγ)
− 1
βδ+1 y

− δ
βδ+1

)−βδ−2
γyδ

−(βδ + 1) (βδγ)
− 1
βδ+1 y−

δ
βδ+1

= lim
y→∞

(
y

δ
βδ+1 + x√

(βδ+1)(βδγ)
1

βδ+1 y
− δ
βδ+1

)−βδ−2
yδ

y−
δ

βδ+1

= lim
y→∞

1 +
x√

(βδ + 1) (βδγ)
1

βδ+1 y
δ

βδ+1

−βδ−2

= 1,

which is su�cient to show that for each x̃, Proposition 2 is applicable with

k0 = 2 on interval Ix̃ :=

[
x∗y − x̃√

−h′′y (x∗y)
, x∗y + x̃√

−h′′y (x∗y)

]
. Hence for each x̃,

there exists a constant C1(x̃) > 0 such that as y →∞

y−
δ/2
βδ+1 exp

(
Ay

δ
βδ+1

)
· Ĩy ≥ y−

δ/2
βδ+1 exp

(
Ay

δ
βδ+1

)
·
∫
Ix̃

gy(x) dx

=
C1(x̃) (βδγ)

1
2(βδ+1)

√
βδ + 1

.

Using the inequality 2 exp(y)Ĩy ≤ 1 as y →∞, we must have

y−
δ/2
βδ+1 exp

(
Ay

δ
βδ+1

)
· 1

2
exp(−y) ≥ C1(x̃) (βδγ)

1
2(βδ+1)

√
βδ + 1

(A1)

as y →∞. Since 0 ≤ β < 1, we note that if δ < (1−β)−1 then inequality (A1)
does not hold. So, we derive that δ ≥ (1− β)−1. �
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S1 Introduction

We give an overview of the content in the Supplementary Material. In Section
S2.1, we give parameter estimates of the Haver-Winterstein (HW) distribution
as referred to in Section 3. In Sections S2.2-S2.6, we give the details of the
calculations that support the arguments in Section 3. Finally, in Section S3
one can �nd the mathematical derivations of the results stated in of Section 4.

S2 Supplementary Material

S2.1 HW model parameters

Parameter α θ u k λ
0.573 0.893 3.803 1.550 2.908

Parameter µ0 µ1 µ2 σ0 σ1 σ2
1.134 0.892 0.225 0.005 0.120 0.455

Table S1 Parameters of the joint probability density function of signi�cant wave height
HS (m) and wave period Tp (s) for the Northern North Sea (Haver and Winterstein, 2009).

1
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S2.2 Details on calculations for the HW distribution

Let (X,Y ) follow the HW model, see Section 3, with 0 < µ2 < 0.5 and
2µ2 < k. The goal is to calculate the asymptotic behaviour of joint probabilities
P(X > F−1X (p), Y > F−1Y (p)) when p tends to 1 where FX and FY denote the
distribution functions of the random variables X and Y , respectively. First,
we evaluate the distribution function of Y at large values such that we can
calculate F−1Y (p). After, we compute joint probabilities, like P(XE > u, YE >
u), where XE and YE denote X and Y , respectively, on exponential margins,
i.e., XE = − log(1− FX(X)) and YE = − log(1− FY (Y )).

We write down an analytical expression for the survival function FY of Y

FY (y) := P(Y > y) =

∫ ∞
0

Φ

(
log y − µ(x)

σ(x)

)
fX(x) dx. (S1)

where µ(x) and σ(x) are de�ned in the main paper. We remark that we need
to evaluate FY at large y. To that end, we denote py(x) := (log y−µ(x))/σ(x),
and the integrand

gy(x) := Φ (py(x)) fX(x). (S2)

As seen in Figure 1, the integrand gy has two local maxima for y large enough.
Hence, Proposition 2 is not directly applicable. However, we can use the propo-
sition to indirectly prove a lower bound for the intergal (S1). Next, it is
straightforward to �nd an upper bound for the integral with the same rate of
decay as the proven lower bound.

We follow the following sets of steps: (a) we prove that there exist (at least)
two local maxima x∗y and x

∗∗
y , and �nd expressions for both. If there are more

then x∗y is the one with the smallest argument, and x∗∗y is the one with the
second smallest argument; (b) we show that we can apply part of Proposition 2
to the smaller of the two local maxima, which gives a lower bound for the
integral; (c) we de�ne an upperbound g̃y for the integrand gy, compute the
integral of g̃y, and show that this integral has the same rate of decay as the
lower bound; (d) �nally, we combine the results to get an asymptotic expression
for FY (y) as y →∞.

We need to start by working out the expressions for the local maxima. We
do this by considering all possible options, which yields �ve (types of) local
extrema 0 < x0 < x1 < x2 < x3 < x4 < ∞ that satisfy the following: (i) as
y → ∞, py(x0) → ∞ holds and x0 → 0; (ii) as y → ∞, py(x1) → ∞ holds
and x1 → c ∈ (0,∞); (iii) as y →∞, py(x2)→∞ holds and x2 →∞; (iv) as
y →∞, py(x3)→ c ∈ R holds and x3 →∞; (v) as y →∞, py(x4)→ −∞ ∈ R
holds and x4 →∞. It is straightforward to show that x3 and x4 cannot exist.
However, this argument is unnecessary for the purpose of this section.

Finally, we calculate FY (y) using Proposition 2. In particular, we will get
a lower bound by applying Proposition 2 around the local maximum x0 and
we derive an upper bound directly.
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S2.3 Finding local extrema

We consider cases (i), (ii) and (iii). These cases have in common that py(x∗)→
∞ for x∗ ∈ {x0, x1, x2}. We will write x∗ rather than either x0, x1, x2 to not
distinguish between arguments that are applicable to all three cases. To �nd
an expression for x∗ in closed form, we de�ne hy(x) := log gy(x) and we solve
h′y(x∗) = 0. First, we calculate h′y(x),

h′y(x) =
d

dx

(
log Φ (py(x)) + log fX(x)

)
=
−ϕ (py(x))

Φ (py(x))
· p′y(x) +

f ′X(x)

fX(x)
.

Since py(x∗)→∞, we can simplify this expression by using Mills' ratio, which
says that

Φ(x)

ϕ(x)
=

1

x
− 1

x3
+O(x−5)

as x→∞, which implies ϕ(x)/Φ(x) = x+x−1 +O(x−3) as x→∞. Moreover,
we can write

p′y(x) =
d

dx

(
log y − µ(x)

σ(x)

)
= −(log y − µ(x)) · σ

′(x)

σ(x)2
− µ′(x)

σ(x)

= −py(x) · σ
′(x)

σ(x)
− µ′(x)

σ(x)
.

So,

h′y(x∗) = −
(
py(x∗) +

1

py(x∗)
+O

(
py(x∗)

−3)) · (−py(x∗) ·
σ′(x∗)

σ(x∗)
− µ′(x∗)

σ(x∗)

)
+
f ′X(x∗)

fX(x∗)

= py(x∗)
2 · σ

′(x∗)

σ(x∗)
+ py(x∗) ·

µ′(x∗)

σ(x∗)
+
σ′(x∗)

σ(x∗)
+

µ′(x∗)

py(x∗)σ(x∗)

+O

(
σ′(x∗)

py(x∗)2σ(x∗)
+

µ′(x∗)

py(x∗)3σ(x∗)

)
+
f ′X(x∗)

fX(x∗)

as y → ∞. We now �ll in the parametric forms for µ and σ. We can then
simplify this expression to
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h′y(x∗) =
(log y − µ0 − µ1x

µ2
∗ )2 · − 1

2σ1σ2 exp (−σ2x∗) (σ0 + σ1 exp(−σ2x∗))−1/2

(σ0 + σ1 exp(−σ2x∗))3/2

+
(log y − µ0 − µ1x

µ2
∗ )µ1µ2x

µ2−1
∗

σ0 + σ1 exp(−σ2x∗)

−
1
2σ1σ2 exp(−σ2x∗)(σ0 + σ1 exp(−σ2x∗))−1/2

(σ0 + σ1 exp(−σ2x∗))1/2

+
µ1µ2x

µ2−1
∗

log y − µ0 − µ1x
µ2
∗

+O

(
xµ2−1
∗

(log y − µ0 − µ1x
µ2
∗ )3

+
exp(−σ2x∗)

(log y − µ0 − µ1x
µ2
∗ )2

)
+
f ′X(x∗)

fX(x∗)

=− (log y − µ0 − µ1x
µ2
∗ )2 · σ1σ2 exp (−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))2

+
(log y − µ0 − µ1x

µ2
∗ )µ1µ2x

µ2−1
∗

σ0 + σ1 exp(−σ2x∗)
− σ1σ2 exp(−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))

+
µ1µ2x

µ2−1
∗

log y − µ0 − µ1x
µ2
∗

+O

(
xµ2−1
∗

(log y − µ0 − µ1x
µ2
∗ )3

+
exp(−σ2x∗)

(log y − µ0 − µ1x
µ2
∗ )2

)

+
f ′X(x∗)

fX(x∗)
.

Since, h′y(x∗) = 0 for all y, we can let y →∞, to further simplify

0 = lim
y→∞

h′y(x∗)

= lim
y→∞

(
− log2 y · σ1σ2 exp(−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))2

+ log y ·

(
(µ0 + µ1x

µ2
∗ )σ1σ2 exp (−σ2x∗)

(σ0 + σ1 exp(−σ2x∗))2
+

µ1µ2x
µ2−1
∗

σ0 + σ1 exp(−σ2x∗)

)

− (µ0 + µ1x
µ2
∗ )µ1µ2x

µ2−1
∗

σ0 + σ1 exp(−σ2x∗)
− σ1σ2 exp(−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))

− (µ0 + µ1x
µ2
∗ )2 · σ1σ2 exp (−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))2
+

µ1µ2x
µ2−1
∗

log y − µ0 − µ1x
µ2
∗

+
f ′X(x∗)

fX(x∗)

)
.

(S3)
We now split up the analysis into the three cases: (i) x∗ = x0 → 0; (ii)
x∗ = x1 → c ∈ (0,∞); (iii) x∗ = x2 →∞.

Case (i): x∗ = x0 → 0
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In this case, there must exist a y′ > 0 such that for all y > y′, x0(y) < u. So,
let y > y′, then

f ′X(x0)

fX(x0)
= − log x0 − θ

x0α2
− 1

x0
.

Filling in x∗ = x0 simpli�es equation (S3) to

lim
y→∞

(
− log2 y · σ1σ2

2(σ0 + σ1)2
+ log y ·

(
µ0σ1σ2

(σ0 + σ1)2
+
µ1µ2x

µ2−1
0

σ0 + σ1

)
− µ0µ1µ2x

µ2−1
0

σ0 + σ1

− σ1σ2
2(σ0 + σ1)

− µ2
0σ1σ2

2(σ0 + σ1)2
+
µ1µ2x

µ2−1
0

log y
− log x0 − θ

x0α2
− 1

x0

)
= 0.

(S4)
Because 0 < µ2 < 0.5, the dominating terms within this limit are of the order
log2(y) and log y · xµ2−1

0 . Indeed, (log x0)/x0 is dominated by both of these
terms since, we must eventually have x2µ2−2

0 > (log x0)/x0. So x0 must satisfy
as y →∞

− log y · σ1σ2
2(σ0 + σ1)

+ log y · µ1µ2 · xµ2−1
0 = O

(
log x0
x0 log y

)
.

Finally, we derive the following asymptotic expression for x0 as y →∞

x0 =

(
σ1σ2

2µ1µ2(σ0 + σ1)

)− 1
1−µ2

· (log y)
− 1

1−µ2 +O
(
log−2(y)

)
. (S5)

We will later show that h′′y(x0) < 0. So, indeed x0 corresponds to a local
maximum.

Case (ii): x∗ = x1 → c ∈ (0,∞)

In this case, equation (S3) is equivalent to

lim
y→∞

−c1 log2 y + c2 log y − c3 = 0

where

0 < c1 =
σ1σ2 exp(−σ2c)

2(σ0 + σ1 exp(−σ2c))2

0 < c2 =
(µ0 + µ1c

µ2)σ1σ2 exp (−σ2c)
(σ0 + σ1 exp(−σ2c))2

+
µ1µ2c

µ2−1

σ0 + σ1 exp(−σ2c)

0 < c3 =
(µ0 + µ1c

µ2)µ1µ2c
µ2−1

σ0 + σ1 exp(−σ2c)
+

σ1σ2 exp(−σ2x∗)
2(σ0 + σ1 exp(−σ2x∗))

+
(µ0 + µ1c

µ2)2 · σ1σ2 exp (−σ2c)
2(σ0 + σ1 exp(−σ2c))2

+
µ1µ2c

µ2−1

log y − µ0 − µ1cµ2
− f ′X(c)

fX(c)
.
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We can now clearly see that equation (S3) cannot be valid under this
assumption. We conclude that x1 does not exist.

Case (iii): x∗ = x2 →∞

Finally, let x∗ = x2 →∞. In this case, there must exist a y′′ > 0 such that for
all y > y′′, x0(y) > u. So, let y > y′′, then

f ′X(x0)

fX(x0)
=
k − 1

x∗
− kxk−1∗

λk
.

Now, equation (S3) is equivalent to

lim
y→∞

(
− log2 y · σ1σ2 exp(−σ2x2)

2σ2
0

+ log y ·

(
(µ0 + µ1x

µ2

2 )σ1σ2 exp (−σ2x2)

σ2
0

+
µ1µ2x

µ2−1
2

σ0

)

− (µ0 + µ1x
µ2

2 )µ1µ2x
µ2−1
2

σ0
− σ1σ2 exp(−σ2x2)

2σ0

− (µ0 + µ1x
µ2

2 )2 · σ1σ2 exp (−σ2x2)

2σ2
0

+
µ1µ2x

µ2−1
2

log y − µ0 − µ1x
µ2

2

+
k − 1

x2
− kxk−12

λk

)
= 0.

(S6)

The dominating terms in equation (S6) are of the order log2 y, log y · xµ2−1
2

and xk−12 . So, we can simplify equation (S6) to

lim
y→∞

− log2 y · σ1σ2 exp(−σ2x2)

2σ2
0

+ log y · µ1µ2x
µ2−1
2

σ0
− kxk−12

λk
= 0. (S7)

We note that the �rst and third terms have a negative sign, and the second
has a positive sign. We note that we cannot simplify this further without
considering the following two options as y →∞: (a) exp(−σ2x2) log2 y � xk−12 ;
(b) exp(−σ2x2) log2 y � xk−12 . Both of these cases will yield a solution to
equation (S7) which we call x2a and x2b respectively.

Case (iii-a): x∗ = x2a →∞ and exp(−σ2x2a) log2 y � xk−12a

We derive from equation (S7) that x2a must satisfy as y →∞

− log y · σ1σ2
2σ0

exp(−σ2x2a) + µ1µ2x
µ2−1
2a = O

(
xk−12a

log y

)
.
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So, x2a must satisfy as y →∞

xµ2−1
2a exp(σ2x2a) = log y ·

(
σ1σ2

2σ0µ1µ2
+O

(
xk−12a

exp(−σ2x2a) log2 y

))
.

Finally, we derive the following asymptotic expression for x2a as y →∞

x2a =
log log y

σ2
+O(log log log y). (S8)

Case (iii-b): x∗ = x2b →∞ and exp(−σ2x2a) log2 y � xk−12a

We derive from equation (S7) that x2b must satisfy as y →∞

log y · µ1µ2

σ0
− kxk−µ2

2

λk
= O

(
log2 y exp(−σ2x2)x1−µ2

2

)
.

So, x2b must satisfy as y →∞

x2b =

(
λkµ1µ2

kσ0

) 1
k−µ2

· (log y)
1

k−µ2 +O
(

(log y)
1

k−µ2
− k−2µ2
k−µ2

)
. (S9)

S2.4 Identi�ying local maxima and local minima

In the previous section, we have found expressions for local extrema, see
equations (S5), (S8) and (S9). In this section, we will show by using the sec-
ond derivative h′′y that x0 and x2b correspond to local maxima and that x2a
corresponds to a local minimum.

We calculated before

h′y(x) =
−ϕ (py(x))

Φ (py(x))
· p′y(x) +

f ′X(x)

fX(x)
.

So,

h′′y(x) = −
ϕ (py(x))

2
p′y(x)2

Φ (py(x))
2 −

ϕ′ (py(x)) p′y(x)2

Φ (py(x))
−
ϕ (py(x)) p′′y(x)

Φ (py(x))
− f ′X(x)2

fX(x)2
+
f ′′X(x)

fX(x)
.

We can simplify h′′y(x∗) for x∗ ∈ {x0, x2a, x2b} as y →∞ by using the identities

ϕ(py(x∗))/Φ(py(x∗)) ∼ py(x∗) + py(x∗)
−1 as y →∞ and ϕ′(x) = −xϕ(x). We
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get as y →∞

h′′y(x∗) ∼ −
(
py(x∗) +

1

py(x∗)

)2

p′y(x∗)
2 +

(
py(x∗) +

1

py(x∗)

)
py(x∗)p

′
y(x∗)

2

−
(
py(x∗) +

1

py(x∗)

)
p′′y(x∗)−

f ′X(x∗)
2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)

∼ −p′y(x∗)
2 −

p′y(x∗)
2

py(x∗)2
− py(x∗)p

′′
y(x∗)−

p′′y(x∗)

py(x∗)
− f ′X(x∗)

2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)

∼ −p′y(x∗)
2 − py(x∗)p

′′
y(x∗)−

f ′X(x∗)
2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)
.

We work out p′y(x)2 and p′′y(x) in terms of py(x)

p′y(x)2 =

(
−py(x) · σ

′(x)

σ(x)
− µ′(x)

σ(x)

)2

= py(x)2·σ
′(x)2

σ(x)2
+py(x)·2σ

′(x)µ′(x)

σ(x)2
+
µ′(x)2

σ(x)2

and

p′′y(x) =
d2

dx2

(
log y − µ(x)

σ(x)

)
= −µ

′′(x)

σ(x)
+ 2 · µ

′(x)σ′(x)

σ(x)2
+ (log y − µ(x)) ·

(
2σ′(x)2

σ(x)3
− σ′′(x)

σ(x)2

)
= py(x) ·

(
2σ′(x)2

σ(x)2
− σ′′(x)

σ(x)

)
+ 2 · µ

′(x)σ′(x)

σ(x)2
− µ′′(x)

σ(x)
.

So, as y →∞

h′′y(x∗) ∼ −py(x∗)
2 · σ

′(x∗)
2

σ(x∗)2
− py(x∗) ·

2σ′(x∗)µ
′(x∗)

σ(x∗)2
− µ′(x∗)

2

σ(x∗)2

− py(x∗)

(
py(x∗) ·

(
2σ′(x∗)

2

σ(x∗)2
− σ′′(x∗)

σ(x∗)

)
+ 2 · µ

′(x∗)σ
′(x∗)

σ(x∗)2
− µ′′(x∗)

σ(x∗)

)
− f ′X(x∗)

2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)

∼ −py(x∗)
2 ·
(

3σ′(x∗)
2

σ(x∗)2
− σ′′(x∗)

σ(x∗)

)
− py(x∗)

(
4µ′(x∗)σ

′(x∗)

σ(x∗)2
− µ′′(x∗)

σ(x∗)

)
− µ′(x∗)

2

σ(x∗)2
− f ′X(x∗)

2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)
.
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For x = x0, we have

µ′(x0) = µ1µ2x
µ2−1
0 ,

µ′′(x0) = −µ1µ2(1− µ2)xµ2−2
0 ,

σ(x0) ∼
√
σ0 + σ1,

σ′(x0) ∼ −σ1σ2/(2
√
σ0 + σ1),

σ′′(x0) ∼ σ2
1σ

2
2/(4(σ0 + σ1)3/2), and

py(x0) ∼ log y/
√
σ0 + σ1.

So,

h′′y(x0) ∼ − log2 y

σ0 + σ1
·
(

3σ2
1σ

2
2

4(σ0 + σ1)2
− σ2

1σ
2
2

4(σ0 + σ1)2

)
+

log y√
σ0 + σ1

(
2µ1µ2x

µ2−1
0 · σ1σ2

(σ0 + σ1)3/2
− µ1µ2(1− µ2)xµ2−2

0√
σ0 + σ1

)

− µ2
1µ

2
2x

2µ2−2
0

σ0 + σ1
+

1

x20
+

log x0 − θ
x20α

2
− 1

x20α
2

∼ − σ2
1σ

2
2

2(σ0 + σ1)3
· log2 y − µ1µ2(1− µ2)

σ0 + σ1
· log y · xµ2−2

0

− µ2
1µ

2
2

σ0 + σ1
· x2µ2−2

0 +
1

x20
+

log x0 − θ
x20α

2
− 1

x20α
2
.

We combine this result with equation (S5), to get

h′′y(x0) ∼ −µ1µ2(1− µ2)

σ0 + σ1
· log y · xµ2−2

0 ∼ −C (log y)
2+ 1

1−µ2

with

C =
µ1µ2(1− µ2)

σ0 + σ1
·
(

σ1σ2
2µ1µ2(σ0 + σ1)

)1+ 1
1−µ2

.

We conclude that h′′y(x0) < 0 and that indeed x0 corresponds to a local
maximum.

For x = x2∗ with ∗ = a, b, we have

µ′(x2∗) = µ1µ2x
µ2−1
2∗ ,

µ′′(x2∗) = −µ1µ2(1− µ2)xµ2−2
2∗ ,

σ(x2∗) ∼
√
σ0,

σ′(x2∗) ∼ −σ1σ2/(2
√
σ0) · exp(−σ2x2∗),

σ′′(x2∗) ∼ σ1σ2
2/(2
√
σ0) · exp(−σ2x2∗), and

py(x2b) ∼ log y/
√
σ0.
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So,

h′′y(x2∗) ∼ −
log2 y

σ0
·
(

3σ2
1σ

2
2 · exp(−2σ2x2∗)

4σ2
0

− σ1σ
2
2 · exp(−σ2x2∗)

2σ0

)
+

log y
√
σ0

(
2µ1µ2x

µ2−1
2∗ · σ1σ2 exp(−σ2x2∗)

σ
3/2
0

− µ1µ2(1− µ2)xµ2−2
2∗√

σ0

)

− µ2
1µ

2
2x

2µ2−2
2∗

σ0
− k − 1

x22∗
− k(k − 1)xk−22∗

λk
.

For x2∗ = x2a, we simplify

h′′y(x2a) ∼ σ1σ
2
2

2σ2
0

· log2 y · exp(−σ2x2a)

which con�rms that x2a corresponds to a local minimum. Finally, for x2∗ = x2b,
we simplify

h′′y(x2b) ∼ −
µ1µ2(1− µ2)xµ2−2

2b

σ0
· log y −

k(k − 1)xk−22b

λk

∼ −

µ1µ2(1− µ2)
(
λkµ1µ2

kσ0

) µ2−2
k−µ2

σ0
+
k(k − 1)

(
λkµ1µ2

kσ0

) k−2
k−µ2

λk

 (log y)
k−2
k−µ2

∼ −
(
µ1µ2(1− µ2)

σ0

kσ0
λkµ1µ2

+
k(k − 1)

λk

)
·
(
λkµ1µ2

kσ0

) k−2
k−µ2

(log y)
k−2
k−µ2

∼ − k

λk
(k − µ2) ·

(
λkµ1µ2

kσ0

) k−2
k−µ2

(log y)
k−2
k−µ2 .

Finally, it is clear to see that h′′y(x2b) < 0 which con�rms that x2b is a local
maximum.

S2.5 Calculating the survival function of Y

We will apply Proposition 2 to gy from equation (S2), where we �nd that
k0 = 2 and x∗y = x0(y). This gives us a lower bound for FY (y) as y →∞. We
start with evaluating gy(x0) and after, we check the smoothness assumption
of the proposition for k0 = 2. Finally, we derive an upper bound that is of the
same order as the lower bound. Hence, we can combine the lower and upper
bound to get an estimate for the rate of convergence to 0 of FY (y).

Before, we evaluate gy(x0) and h′′y(x0), we �rst simplify py(x0) and py(x0)
as y →∞. We have

py(x0) =
log y√
σ0 + σ1

− µ0√
σ0 + σ1

+O
(

(log y)−
µ2

1−µ2

)
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and

1

py(x0)
=

√
σ0 + σ1
log y

+O
(

(log y)−2−
µ2

1−µ2

)
=

√
σ0 + σ1
log y

+O
(
(log y)−2

)
.

So,

gy(x0) = ϕ

(
log y − µ(x0)

σ(x0)

)
·

(
σ(x0)

log y − µ(x0)
+O

((
σ(x0)

log y − µ(x0)

)3
))

fX(x0)

=
1√
2π

exp

{
−1

2

(
log y − µ(x0)

σ(x0)

)2
}

·

(
σ(x0)

log y − µ(x0)
+O

((
σ(x0)

log y − µ(x0)

)3
))

exp
{
− (log x0−θ)2

2α2

}
√

2πx0α

=

√
σ0 + σ1
2πα

exp

{
−1

2

(
log y√
σ0 + σ1

− µ0√
σ0 + σ1

+O
(

(log y)−
µ2

1−µ2

))2
}

·
1

log y +O
(
(log y)−2

)
(

σ1σ2

2µ1µ2(σ0+σ1)

)− 1
1−µ2 · (log y)

− 1
1−µ2 +O

(
log−2(y)

)

· exp

−
(

log

[(
σ1σ2

2µ1µ2(σ0+σ1)

)− 1
1−µ2 · (log y)

− 1
1−µ2 +O

(
log−2(y)

)]
− θ
)2

2α2


= exp

{
− 1

2(σ0 + σ1)

(
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

))}
.

Next, we check the assumptions of Proposition 2. First, we clearly have
h′y(x0)(−h′′y(x0))−1/2 = 0. Secondly, we have one clearly dominating term in
the second derivative of hy near x0, so it is enough to show that

lim
y→∞

h′′y

(
x0 + x√

−h′′y (x0)

)
h′′y(x0)

= lim
x→0

py

(
x0 + x√

−h′′y (x0)

)
py(x0)

·
µ′′
(
x0 + x√

−h′′y (x0)

)
µ′′ (x0)

· σ(x0)

σ

(
x0 + x√

−h′′y (x0)

)
is equal to 1 for any �xed x. Since (−h′′y(x0))−1/2 � x0 as y →∞ and since py
and σ are di�erentiable at 0 = limy→∞ x0, it is clear that the �rst and third
term of the equation above tend to 1. Since µ′′(0) does not exist, we would
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need to work out the term involving the second derivative of µ more carefully.
We get

µ′′
(
x0 + x√

−h′′y (x0)

)
µ′′ (x0)

=

1 +
x

x0
√
−h′′y(x0)

µ2−2

. (S10)

We note that x0
√
−h′′y(x0) is asymptotically equal to a constant times

(log y)(1−2µ2)/(2−2µ2). Since µ2 < 0.5, the second term within the brackets in
equation (S10) tends to 0 when y →∞. This yields that the right hand side of
equation (S10) converges to 1 as y →∞. This is enough to show the smooth-
ness assumption of the proposition. We get that for any �xed x̃ > 0, there
exists a constant C1(x̃) such that

∫ ∞
0

gy(x) dx ≥
∫ x0+

x̃√
−h′′y (x0)

x0− x̃√
−h′′y (x0)

gy(x) dx

≥ C1(x̃)gy(x0) · 1√
−h′′y(x0)

(as y →∞) = exp

{
− 1

2(σ0 + σ1)

[
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

)]}
.

(S11)

Next, we evaluate gy(x2b) but �rst we work out

py(x2b) =
log y
√
σ0

+O
(

(log y)
µ2
k−µ2

)
and

1

py(x0)
=

√
σ0

log y
+O

(
(log y)−2+

µ2
k−µ2

)
.
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So,

gy(x2b) = ϕ

(
log y − µ(x2b)

σ(x2b)

)(
σ(x2b)

log y − µ(x2b)
+O

(
σ(x2b)

3

(log y − µ(x2b))3

))
fX(x2b)

= ϕ

(
log y
√
σ0

+O
(

(log y)
µ2
k−µ2

))
·
√
σ0

log y
·
(

1 +O
(

(log y)−1+
µ2
k−µ2

))
· k
λk

(
λkµ1µ2

kσ0

) k−1
k−µ2

(log y)
k−1
k−µ2

(
1 +O

(
(log y)−

k−2µ2
k−µ2

))

· exp

−
(
σ1λ

kµ1µ2

kσ2
0

) k
k−µ2

(log y)
k

k−µ2

λk

(
1 +O((log y)−

k−2µ2
k−µ2

)
= exp

{
− 1

2σ0
log2(y) +O

(
(log y)

k
k−µ2

)}
.

In particular, we �nd that gy(x0) > gy(x2b) for y large enough. We have now
all tools available to �nd an upperbound that gives the result directly,

gy(x) ≤ g̃y(x) :=

{
max{gy(x) : x ∈ [0, x2]} for 0 ≤ x ≤ x2,
fX(x) for x > x2.

Since gy(x2b) ≤ gy(x0) for y large enough, we have derived that the maximum
over the interval [0, x2] is attained at x0. We here note that we do not need to
show that x3 and x4 cannot exist as per de�nition, as they would clearly need
to be larger than x2 if they exist. So, as y →∞∫ ∞

0

gy(x) dx ≤
∫ x2b

0

gy(x0) dx+

∫ ∞
x2b

fX(x) dx = x2bgy(x0) + FX(x2b)

=

(
λkµ1µ2

kσ0

) 1
k−µ2 (

1 +O
(

(log y)−
k−2µ2
k−µ2

))
(log y)

1
k−µ2 (S12)

· exp

{
− 1

2(σ0 + σ1)

[
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

)]}
+ exp

{
−λ−k

(
λkµ1µ2

kσ0

) k
k−µ2

(log y)
k

k−µ2

[
1 +O

(
(log y)−

k−2µ2
k−µ2

)]}

= exp

{
− 1

2(σ0 + σ1)

[
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

)]}
. (S13)

Now, combining equation (S11) and equation (S13), yields as y →∞

P(Y > y) =

∫ ∞
0

gy(x) dx = exp

{
− 1

2(σ0 + σ1)

[
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

)]}
.
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S2.6 Calculating η

We use the previous work to transform Y to YE on standard exponential
margins. Thus

YE = F−1E (FY (Y )) = − log(1− FY (Y ))

= − log

(
exp

{
− 1

2(σ0 + σ1)

[
log2 Y − 2µ0 log Y +O

(
(log Y )

1−2µ2
1−µ2

)]})
=

1

2(σ0 + σ1)

(
log2 Y − 2µ0 log Y +O

(
(log Y )

1−2µ2
1−µ2

))
.

So, the function T that transforms log Y to YE is given by

T (y) =
y2

2(σ0 + σ1)
− µ0y

σ0 + σ1
+O

(
y

1−2µ2
1−µ2

)
,

as y →∞. In calculating the extremal dependence measures, we need to solve
T (y) = u for large y. We get

T−1(u) =
√

2(σ0 + σ1)u+O(1)

as u→∞. We write down a formula for χ = limu→∞ P(YE > u | (X/λ)k > u)
as u→∞

P(YE > u | (X/λ)k > u) = eu
∫ ∞
λu1/k

P(T (log Y ) > u | X = x)fX(x) dx

= eu
∫ ∞
λu1/k

P(log Y > T−1(u) | X = x)fX(x) dx

= eu
∫ ∞
λu1/k

Φ

(
T−1(u)− µ(x)

σ(x)
| X = x

)
· kx

k−1

λk
exp

{
−
(x
λ

)k}
dx.

In particular, we have for I = [λu1/k, λ(2 + σ1/σ0)1/k]

P(YE > u | (X/λ)k > u) (S14)

> eu
∫
I

Φ

(
T−1(u)− µ(x)

σ(x)
| X = x

)
· kx

k−1

λk
exp

{
−
(x
λ

)k}
dx.

(S15)

For ease of presentation, we de�ne pu(x) = [T−1(u) − µ(x)]/σ(x). Similar to
the previous section, we de�ne gu as the integrand and hu := log gu as the log
of the integrand, both are speci�ed only on the integration domain I. For x in
the integration domain, we have

hu(x) := log
(
Φ(pu(x))fX(x)

)
.
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We apply Proposition 2 to bound integral (S14) from below. In particular,
we �rst need to �nd the mode of hu over the integration domain. Let xu
be a sequence such that for each u, xu lies in the integration domain. So,
then we can write x = Cuu

1/k + o(u1/k) for some bounded set of constants
Cu ∈ [λ, λ(2 + σ1/σ0)]. We have

h′u(x) = −ϕ(pu(x))

Φ(pu(x))
· p′u(x)− k − 1

x
− kxk−1

λk

=
ϕ(pu(x))

Φ(pu(x))
·
(
pu(x) · σ

′(x)

σ(x)
+
µ′(x)

σ(x)

)
− k − 1

x
− kxk−1

λk
.

Since, pu(x) ∼
√

2(1 + σ1/σ0)u→∞ as u→∞, we simplify

h′u(x) ∼

√
2

(
1 +

σ1
σ0

)
u ·

(√
2

(
1 +

σ1
σ0

)
u · −σ1σ2e

−σ2(Cuu1/k+o(u1/k))

2σ0

+
µ1µ2

(
Cuu

1/k + o(u1/k)
)µ2−1

√
σ0

)

− k − 1

Cuu1/k + o(u1/k)
−
k
(
Cuu

1/k + o(u1/k)
)k−1

λk
.

∼ −kC
k−1
u u1−1/k

λk
.

In particular, we derive that h′u(x) < 0 as u → ∞. So, the maximum of hu
over the integration domain must be attained at the boundary and hence is
given by x0 = λu1/k. In particular, we get h′u(x0) ∼ −ku1−1/k/λ. We now will
show that we can apply Proposition 2 with k0 = 1. We have, as u→∞,

hu(λu1/k) = −1

2
log(2π)− 1

2
pu(λu1/k)2 − log pu(λu1/k) + log fX(λu1/k)

= −1

2
log(2π)− 1

2

(
T−1(u)− µ(λu1/k)

σ(λu1/k)

)2

− log

(
T−1(u)− µ(λu1/k)

σ(λu1/k)

)
+ log

(
ku(k−1)/k

λ

)
− u

= −
(

2 +
σ1
σ0

)
u+O

(
u1/2+µ2/k

)
.

Next, we check the smoothness assumption of Proposition 2 with k0 = 1.
Let δ > 0 and 0 ≤ x ≤ δ. It is now enough to show that the limit of u to
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in�nity of the following expression tends to 1. We have

lim
u→∞

h′u

(
λu1/k + x

−h′u(λu1/k)

)
h′u(λu1/k)

= lim
u→∞

(
λu1/k + λx

ku1−1/k

)k−1
u(k−1)/k

= lim
u→∞

(
λ+

λx

k

)k−1
= 1.

This is enough to show the smoothness assumption of Proposition 2 with
k0 = 1. We conclude that for each x̃, there exists a constant C1(x̃) such that

∫ ∞
λu1/k

gu(x) dx ≥
∫ λu1/k+ x̃

−h′u(x0)

λu1/k

gu(x) dx ≥ C1(x̃)gu(λu1/k) · 1

−h′u(λu1/k)

(as u→∞)
= e

−
(
2+

σ1
σ0

)
u+O

(
u

1
2
+
µ2
k

)
. (S16)

To get an upper bound, we use the following crude upper bound g̃u for gu,

gu(x) ≤ g̃u(x) :=

 gu(λu1/k) for λu1/k ≤ x ≤ λ
(

2 + σ1

σ0

)1/k
u1/k,

fX(x) for x > λ
(

2 + σ1

σ0

)1/k
u1/k.

We get as u→∞,

∫ ∞
λu1/k

gu(x) dx ≤

(
λ

(
2 +

σ1
σ0

)1/k

u1/k − λu1/k
)
gu(λu1/k) (S17)

+ FX

(
λ

(
2 +

σ1
σ0

)1/k

u1/k

)

= exp

(
−
(

2 +
σ1
σ0

)
u+O

(
u1/2+µ2/k

))
+ exp

(
−
(

2 +
σ1
σ0

)
u

)
= exp

(
−
(

2 +
σ1
σ0

)
u+O

(
u1/2+µ2/k

))
. (S18)

Combining equations (S16) and (S18), we get

P(YE > u | (X/λ)k > u) =

∫ ∞
λu1/k

gu(x) dx = exp

(
−
(

2 +
σ1
σ0

)
u+O

(
u1/2+µ2/k

))
as u→∞. From this expression, it is straightforward to see that ξ = 0 and

η−1 = 2 +
σ1
σ0
.
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S3 Details on Calculations for the Exact HT
model

S3.1 Introduction

Assume model (10) for random vector (X,Y ) with H as in equation (11). We
recall that (X,Y ) is a random vector such that X and Y both have standard
Laplace margins. Moreover,there exist 0 ≤ α ≤ 1, β < 1 and u > 0 such that
for x > u

P(Y > y | X = x) = H

(
y − αx
xβ

)
,

holds for all y ∈ R with

H (z) = exp(−γzδ)1{z > 0}+ 1{z ≤ 0}

for γ > 0 and δ ≥ (1− β)−1. In this section, we work out the value for η when
0 < α < 1, β > 0 and δ = (1 − β)−1. The other cases are signi�cantly easier
to work out and the results of these cases are stated in the main paper.

S3.2 Calculating η

We write

P(Y > u,X > u) =

∫ ∞
u

H

(
u− αx
xβ

)
fX(x) dx

=
1

2

∫ u/α

u

exp

(
−γ
(
u− αx
xβ

)δ
− x

)
dx+

1

2

∫ ∞
u/α

exp(−x) dx

=
1

2

∫ u/α

u

exp

(
−γ
(
u− αx
xβ

)δ
− x

)
dx+

1

2
exp

(
−u
α

)
.

In general, we cannot evaluate the �rst integral in closed form for �nite u.
However, we can bound it from below using Proposition 2. A bound from above
can again be found directly. We de�ne the integration domain I = [u, u/α],

gu(x) := exp

(
−γ
(
u− αx
xβ

)δ
− x

)

for x ∈ I and hu := log gu on I. We now need to determine whether or not the
mode x0 := x0(u) of the integrand gu over the integration domain I lies on the
boundary of I or in the interior of I. We assume that x0 lies in the interior of
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I, then we have

0 = h′u(x0) = γδ

(
u− αx0
xβ0

)δ−1
·

(
α

xβ0
+

(u− αx0)β

xβ+1
0

)
− 1

= γδβ(u− αx0)δx−βδ−10 + γδα(u− αx0)δ−1x−βδ0 − 1

= γδβ(u− αx0)δx−δ0 + γδα(u− αx0)δ−1x−δ+1
0 − 1

and we derive that

β(u− αx0)δ + α(u− αx0)δ−1x0 =
1

γδ
xδ0. (S19)

Since, we work under the premise that x0 ∈ (u, u/α), we are only interested in
�nding solutions that satisfy x0 = c̃u + o(u) as u → ∞ for some c̃ ∈ [1, 1/α],
otherwise the mode of hu is found at the boundary of the integration domain
at u. We try x0 = cu with c ∈ (0,∞) in equation (S19), and we derive that
this is an exact solution if c solves

0 = γδ
(
β(1− αc)δ + αc(1− αc)δ−1

)
− cδ = γ(1− αc)δ−1 (δ − 1 + αc)− cδ.

(S20)
Since the right hand side is a continuous function of c for c ∈ [0, 1/α], we show
by the intermediate value theorem that c ∈ (0, 1/α) by inserting c = 0 and
c = 1/α and comparing signs of the right hand side of equation (S20). Indeed,
for c = 0, we have that

γ(1− αc)δ−1 (δ − 1 + αc)− cδ = γ(δ − 1) > 0

and for c = 1/α, we have that

γ(1− αc)δ−1 (δ − 1 + αc)− cδ = −α−δ < 0.

We recall that we are only interested in the value for c if c ∈ (1, 1/α). Hence,
let c = 1 in the right hand side of equation (S20) to give

γδ
(
β(1− αc)δ + αc(1− αc)δ−1

)
− cδ = γ(1− α)δ−1 ((δ − 1) (1− α) + δα)− 1

= γ(1− α)δ−1(δ − 1 + α)− 1

which is negative if and only if γ(1− α)δ−1(δ − 1 + α) < 1. We conclude that
c ∈ (0, 1) if and only if γ(1−α)δ−1(δ− 1 +α) < 1 and c ∈ [1, 1/α) if and only
if γ(1−α)δ−1(δ−1 +α) ≥ 1. We term these cases as Case (2a) and Case (2b),
respectively. In Case (2b), x0 lies in the interior of the integration domain I
for large enough u, and in Case (2a), the mode over the integration domain I
is found at u on the boundary.
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We work out gu(x0) for both Case (2a) and (2b),

gu(x0) = exp

−γ
(
u− αx0
xβ0

)δ
− x0


= exp

{
−γ
(
u− α(cu+ o(u))

(cu+ o(u))β

)δ
− cu+ o(u)

}

= exp

{
−γuδ−βδ (1− αc+ o(1))δ

cβδ + o(1))
− cu+ o(u)

}
= exp

{
−
(
γ(1− αc)δ

cβδ
+ c

)
u+ o(u)

}
.

Next, we work out h′u(x0) in Case (2a)

h′u(x0) = γδβ(u− αu)δu−βδ−1 + γδα(u− αu)δ−1u−βδ − 1

= γ(1− α)δ−1 (δ − 1 + α)− 1.

By de�nition of Case (2a), we have that h′u(x0) < 0. Let C > 0 and |x| ≤ C,
then as u→∞

h′u

(
x0 −

x

h′u(x0)

)
= γδβ

(
u− α

(
x0 +

x

−h′u(x0)

))δ (
x0 +

x

−h′u(x0)

)−βδ−1
+ γδα

(
u− α

(
x0 +

x

−h′u(x0)

))δ−1(
x0 +

x

−h′u(x0)

)−βδ
− 1

= γδβ

(
u− αu− xα

1− γ(1− α)δ−1 (δ − 1 + α)

)δ
·
(
u+

x

1− γ(1− α)δ−1 (δ − 1 + α)

)−βδ−1
+ γδα

(
u− αu− xα

1− γ(1− α)δ−1 (δ − 1 + α)

)δ−1
·
(
u+

x

1− γ(1− α)δ−1 (δ − 1 + α)

)−βδ
− 1

= γδβ
(
uδ(1− α)δ +O

(
uδ−1

)) (
u−βδ−1 +O

(
u−βδ−2

))
+ γδα

(
uδ−1(1− α)δ−1 +O

(
uδ−2

)) (
u−βδ +O

(
u−βδ−1

))
− 1

= h′u(x0) +O
(
uδ−2−βδ

)
.

So,

lim
u→∞

h′u

(
x0 + x

−h′u(x0)

)
h′u(x0)

= 1,
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which is enough to show the smoothness assumption of Proposition 2 with
k0 = 1. We get that for any �xed x̃ > 0 there exist a C1(x̃) > 0 such that

P(X > u, Y > u) =

∫ u/α

u

gu(x) dx+
1

2
exp

{
−u
α

}
≥ 1

2

∫ x0+
x̃

−h′u(x0)

x0− x̃
−h′u(x0)

gu(x) dx+
1

2
exp

{
−u
α

}
≥ 1

2
C1(x̃)gu(x0) · 1

−h′u(x0)
+

1

2
exp

{
−u
α

}
≥ 1

2
C1(x̃) exp

{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
· 1

1− γ(1− α)δ−1 (δ − 1 + α)
+

1

2
exp

{
−u
α

}
= exp

{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
.

In the last step we used that γ(1−α)δ + 1 < 1/α holds, which can be directly
derived from the assumptions corresponding to Case (2b). Similarly to be-
fore, we can �nd an upper bound rather straightforwardly using the following
upperbound for gu(x)

gu(x) ≤ g̃u(x) :=

{
gu(x0) for u ≤ x ≤ u/α,
fX(x) for x > u/α.

So,

P(X > u, Y > u) =

∫ u/α

u

gu(x) dx+
1

2
exp

{
−u
α

}
≤ u

(
1

α
− 1

)
gu(x0) +

1

2
exp

{
−u
α

}
= u

(
1

α
− 1

)
exp

{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
+

1

2
exp

{
−u
α

}
= exp

{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
.

We conclude that

P(X > u, Y > u) = exp
{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
,

χ = 0 and

η =
(
γ(1− α)δ + 1

)−1
.
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For Case (2a), we work out h′′u(x0) as u→∞

h′′u(x0) = −α2γδ(δ − 1)(u− αx0)δ−2x−βδ0 − 2αβγδ2(u− αx0)δ−1x−βδ−10

− βδ(βδ + 1)γ(u− αx0)δx−βδ−20

= −α2γδ(δ − 1)(u− α(cu+ o(u)))δ−2(cu+ o(u))−βδ

− 2αβγδ2(u− α(cu+ o(u)))δ−1(cu+ o(u))−βδ−1

− βδ(βδ + 1)γ(u− α(cu+ o(u)))δ(cu+ o(u))−βδ−2

= −
[
α2γδ(δ − 1)(1− αc)δ−2c−βδ + 2αβγδ2(1− αc)δ−1c−βδ−1

+ βδ(βδ + 1)γ(1− αc)δc−βδ−2
]
uδ−2−βδ + o

(
uδ−2−βδ

)
= −βδ2γc−βδ−2(1− αc)δ−2

(
α2c2 + 2α(1− αc)c+ (1− αc)2

)
u−1 + o

(
u−1

)
= −βδ2γc−βδ−2(1− αc)δ−2u−1 + o

(
u−1

)
= −δ(δ − 1)γc−δ−1(1− αc)δ−2u−1 + o

(
u−1

)
.

Now, let C > 0 and |x| ≤ C, then we have x0 + x(−h′′u(x0))−1/2 = cu+ o(u).
So,

h′′u

(
x0 +

x√
−h′′u(x0)

)
= h′′u (cu+ o(u)) .

So,

lim
u→∞

h′′u

(
x0 + x√

−h′′u(x0)

)
h′′u(x0)

= lim
u→∞

−δ(δ − 1)γc−δ−1(1− αc)δ−2u−1(1 + o(1))

−δ(δ − 1)γc−δ−1(1− αc)δ−2u−1(1 + o(1))
= 1,

which is enough to show the smoothness assumption of Proposition 2 with
k0 = 1. We get that for any �xed x̃ > 0 there exist a C1(x̃) > 0 such that as
u→∞

P(X > u, Y > u) =

∫ u/α

u

gu(x) dx+
1

2
exp

{
−u
α

}
≥ 1

2

∫ x0+
x̃

−h′u(x0)

x0− x̃
−h′u(x0)

gu(x) dx

≥ 1

2
C1(x̃)gu(x0) · 1

−h′u(x0)

= exp

{
−
(
γ(1− αc)δ

cδ−1
+ c

)
u+ o(u)

}
.
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Similarly to before, we can �nd an upper bound rather straightforwardly,

P(X > u, Y > u) =

∫ u/α

u

gu(x) dx+
1

2
exp

{
−u
α

}
≤ u

(
1

α
− 1

)
gu(x0) +

1

2
exp

{
−u
α

}
= u

(
1

α
− 1

)
exp

{
−
(
γ(1− αc)δ

cβδ
+ c

)
u+ o(u)

}
+

1

2
exp

{
−u
α

}
= exp

{
−
(
γ(1− αc)δ

cδ−1
+ c

)
u+ o(u)

}
.

So,

P(X > u, Y > u) = exp

{
−
(
γ(1− αc)δ

cβδ
+ c

)
u+ o(u)

}
,

and we conclude that χ = 0 and

η =

(
γ(1− αc)δ

cδ−1
+ c

)−1
.
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