The Extremal Dependence of Storm Severity, Wind Speed and Surface Level Pressure in the Northern North Sea

Ross Towe, Emma Eastoe, Jonathan Tawn, Philip Jonathan and Yanyun Wu

r.towe@lancaster.ac.uk

Return levels and Pooling

- Return levels are used in the design criteria of an offshore structure to ensure the structure withstands a particularly extreme event
- Can calculate return levels for Hs for a given site in the North sea

Return levels and Pooling

- Return levels are used in the design criteria of an offshore structure to ensure the structure withstands a particularly extreme event
- Can calculate return levels for Hs for a given site in the North sea
- A model is fitted to estimate the return levels of H_s, as there is not enough data to estimate the return levels empirically
- To increase our confidence in the estimates of the return levels, we can pool data across sites

Covariate modelling

Pooling

Motivation

What happens if there is dependence between sites?

Data set	SE(50yr)	SE(100yr)
One site	0.65	1.00
Pooled (perfectly dependent) sites	0.62	0.94
Pooled (independent) sites	0.22	0.30

Standard errors (uncertainty) of the 50 and 100 year return levels

Pooling

What happens if there is dependence between sites?

Data set	SE(50yr)	SE(100yr)
One site	0.65	1.00
Pooled (perfectly dependent) sites	0.62	0.94
Pooled (independent) sites	0.22	0.30

Standard errors (uncertainty) of the 50 and 100 year return levels

- Pooling dependent data produces false estimates of the standard errors
- The effective sample size is smaller for pooled perfectly dependent data compared to pooled independent data

Extremal dependence

Motivation

- We can also consider the extremal dependence Wind Speed (WS) and Significant Wave Height (H_s) at a given site
- A storm is characterised by a number of different factors, such as wind and waves
- A severe storm can be a result of high waves but also a combination of extreme wind and waves

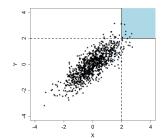
- We can also consider the extremal dependence Wind Speed (WS) and Significant Wave Height (H_s) at a given site
- A storm is characterised by a number of different factors, such as wind and waves
- A severe storm can be a result of high waves but also a combination of extreme wind and waves
- Should we model WS and H_s jointly or independently?
- We are interested in the joint behaviour WS and H_s during a storm

Extremal dependence

Bivariate Normal distribution

The dependence in the body of the data is different to that of the tail

Consider the bivariate Normal distribution with $\rho = 0.8$



Calculate.

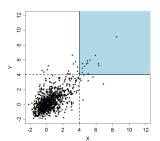
$$P(X > z \mid Y > z)$$
 for $z \to \infty$,

Z	$P(X > z \mid Y > z)$
1.00	0.60
1.50	0.49
2.00	0.33
2.50	0.00
3.00	0.00

Bivariate extreme value distribution

The dependence in the body of the data is different to that of the tail

Consider the bivariate extreme value distribution with $\rho = 0.8$

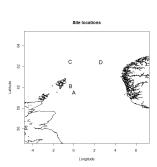


Calculate

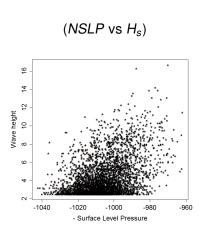
$$P(X > z \mid Y > z)$$
 for $z \to \infty$,

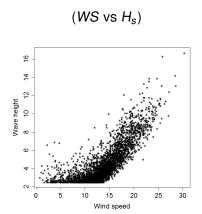
Z	$P(X>z\mid Y>z)$
2.00	0.72
4.00	0.79
6.00	1.00
8.00	1.00
10.00	1.00

- Storm peak events from a 50 year data set:
 - Significant wave height [metres]
 - Wind speed [miles per hour]
 - Surface level pressure [hectopascal]
 - Storm direction [degrees]
- Sites have different local characteristics



Original margins

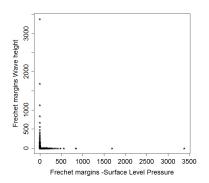




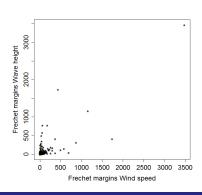
Fréchet margins

Consider the data on Fréchet margins, $F(z) = \exp(-1/z)$

(NSLP vs H_s)



 $(WS vs H_s)$



Definition

Consider a pair of random variables (X,Y) with identical margins,

Asymptotic independence:

$$P(X > z, Y > z) = 0$$
, as $z \to \infty$

Two extreme events are unlikely to occur simultaneously Consider the measure: $\bar{\chi}$

Asymptotic dependence:

$$P(X > z, Y > z) > 0$$
, as $z \to \infty$

Two extreme events are likely to occur simultaneously Consider the measure: χ

Extremal dependence measures

Asymptotic independence:

- $\bar{\chi}$ determines the strength of asymptotic independence
- $\bar{\chi} \in (-1,1)$.
- If $\bar{\chi} = 1 \implies$ asymptotic dependence

Extremal dependence measures

Asymptotic independence:

ullet $ar{\chi}$ determines the strength of asymptotic independence

Covariate modelling

- $\bar{\chi} \in (-1,1)$.
- If $\bar{\chi} = 1 \implies$ asymptotic dependence

Asymptotic dependence:

\chi determines the strength of asymptotic dependence

$$\chi = P(X > z \mid Y > z)$$

- $\chi \in (0,1)$.
- When $\chi = 0 \implies$ asymptotic independence

Extremal dependence measures

Asymptotic independence:

- $\bar{\chi}$ determines the strength of asymptotic independence
- $\bar{\chi} \in (-1,1)$.
- If $\bar{\chi} = 1 \implies$ asymptotic dependence

Asymptotic dependence:

 \(\chi \) determines the strength of asymptotic dependence

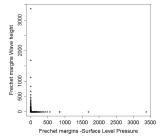
$$\chi = P(X > z \mid Y > z)$$

- $\chi \in (0,1)$.
- When $y = 0 \Rightarrow$ asymptotic independence

$\bar{\chi}$ and χ can be estimated empirically or by using a model

Asymptotic independence case

(NSLP v H_s)

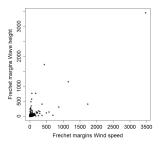


Site	$\hat{\chi}$ (95% CI)
Α	0.61 (0.50,0.72)
В	0.61 (0.50,0.72)
С	0.59 (0.47,0.70)
D	0.65 (0.53,0.77)

Estimates of $\bar{\chi}$ for the 4 sites with the threshold set at the respective 80% quantile estimation threshold

Asymptotic dependence case

(WS v H_s)

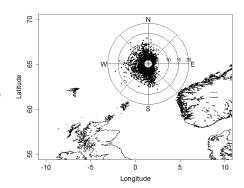


Site	$\hat{\bar{\chi}}$ (95% CI)	$\hat{\chi}$ (95% CI)
Α	0.95(0.81,1.00)	0.73(0.69,0.79)
В	0.86(0.73,0.98)	0.74(0.69,0.78)
С	0.85(0.71,0.99)	0.73(0.68,0.78)
D	0.84(0.71,0.97)	0.72(0.67,0.77)

Estimates of $(\bar{\chi} \text{ and } \chi)$ for the four sites with the threshold set at the respective 80% quantile estimation threshold

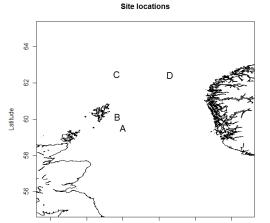
Possible covariates

- The marginal behaviour of the height of waves and the speed of winds is influenced by:
 - Land shadow
 - Storm direction
- Can consider storm direction to be a covariate
- Is the dependence structure, therefore influenced by the same covariates?



Motivation Extremal dependence Covariate modelling Concluding Remarks

Site locations



Longitude

Ross Towe, Emma Eastoe, Jonathan Tawn, Philip Jonathan and Yanyun Wu

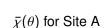
r.towe@lancaster.ac.uk

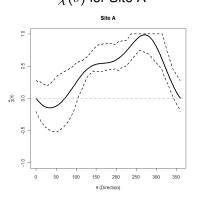
Asymptotic independence case

Introduce storm direction (θ) as a covariate by using a Fourier series:

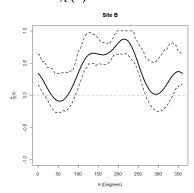
$$\begin{split} \bar{\chi}(\theta) &= 2\min\{\eta_+(\theta),1\}-1, \text{ where} \\ \log[\eta_+(\theta)] &= \alpha_0 + \sum_{i=1}^d \alpha_{1i}\cos(\alpha_{2i}+i\theta), \quad \theta \in [0,360^\circ). \end{split}$$

(NSLP vs H_s) : $\bar{\chi}(\theta)$

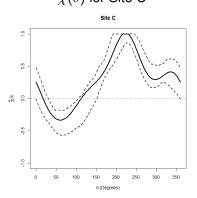




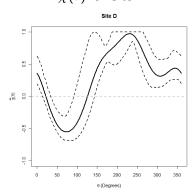
$\bar{\chi}(\theta)$ for Site B



$\bar{\chi}(\theta)$ for Site C



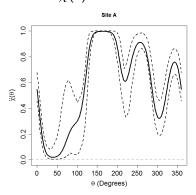
$\bar{\chi}(\theta)$ for Site D



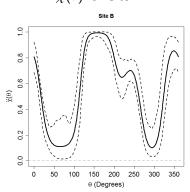
Introduce storm direction (θ) as a covariate by using a Fourier series:

$$\operatorname{logit}[\chi(\theta)] = \beta_0 + \sum_{i=1}^d \beta_{1i} \cos[\beta_{2i} + i\theta], \text{ for } \theta \in [0, 360^\circ)$$

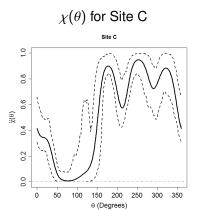
$\chi(\theta)$ for Site A

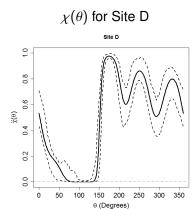


$\chi(\theta)$ for Site B



(WS vs H_s): $\chi(\theta)$





Concluding Remarks

- Need to think carefully about pooling of dependent samples, and dependence between extreme values. Intuition can be misleading
- Wind speed and wave height are asymptotically dependent
- NSLP and wave height are asymptotically independent
- Extremal dependence varies with storm direction are vital for reliable estimation of joint design values for winds, waves and currents
- Empirical modelling of χ and $\bar{\chi}$ may guide the choice of covariates for joint extreme value modelling