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Chapter 1

Analysis of Changepoint Models

Idris A. Eckley, Paul Fearnhead and Rebecca Killick1

1.1 Introduction

Many time series are characterised by abrupt changes in structure, such as sudden
jumps in level or volatility. We consider change points to be those time points which
divide a data set into distinct homogeneous segments. In practice the number of
change points will not be known.

The ability to detect changepoints is important for both methodological and
practical reasons including: the validation of an untested scientific hypothesis [27];
monitoring and assessment of safety critical processes [14]; and the validation of
modelling assumptions [21].

The development of inference methods for change point problems is by no means
a recent phenomenon, with early works including [39], [45] and [28]. Increasingly the
ability to detect change points quickly and accurately is of interest to a wide range
of disciplines. Recent examples of application areas include numerous bioinformatic
applications [37, 15] the detection of malware within software [51], network traffic
analysis [35], finance [46], climatology [32] and oceanography [34].

In this chapter we describe and compare a number of different approaches for
estimating changepoints. For a more general overview of changepoint methods, we
refer interested readers to [8] and [11].

The structure of this chapter is as follows. First we introduce the model we fo-
cus on. We then describe methods for detecting a single changepoint and methods
for detecting multiple changepoints, which will cover both frequentist and Bayesian
approaches. For multiple changepoint models the computational challenge of per-
forming inference is to deal with the large space of possible sets of changepoint
positions. We describe algorithms that, for the class of models we consider, can
perform inference exactly even for large data sets. In Section 1.4 we look at prac-
tical issues of implementing these methods, and compare the different approaches,
through a detailed simulation study. Our study is based around the problem of
detecting changes in the covariance structure of a time-series, and results suggest
that Bayesian methods are more suitable for detection of changepoints, particularly
for multiple changepoint applications. The study also demonstrates the advantage
of using exact inference methods. We end with a discussion.

1Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF
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1.1.1 Model and Notation

Within this chapter we consider the following changepoint models. Let us assume
we have time-series data, y1:n = (y1, . . . , yn). For simplicity we assume the obser-
vation at each time t, yt, is univariate – though extensions to multivariate data
are straightforward. Our model will have a number of changepoints, m, together
with their positions, τ1:m = (τ1, . . . , τm). Each changepoint position is an integer
between 1 and n − 1 inclusive. We define τ0 = 0 and τm+1 = n, and assume that
the changepoints are ordered so that τi < τj if and only if i < j.

The m changepoints will split the data into m + 1 segments. The ith segment
will consist of data yτi−1+1:τi . For each segment there will be a set of parameters;
the parameters associated with the ith segment will be denoted θi. We will write
the likelihood function as

L(m, τ1:m, θ1:m+1) = p(y1:n|m, τ1:m, θ1:m+1).

Here and throughout we use p(·|·) to denote a general conditional density function.
Finally we assume conditional independence of data across segments, so that

p(y1:n|m, τ1:m, θ1:m+1) =

m+1∏
i=1

p(y(τi−1+1):τi |θi).

For any segment we will assume we can calculate, either analytically or numerically,
the maximum likelihood estimator for the segment parameter. We will denote this
by θ̂ or θ̂i depending on the context. Thus we have

max
θ
p(y(τi−1+1):τi |θ) = p(y(τi−1+1):τi |θ̂).

When considering this problem within a Bayesian framework, we will need to
introduce priors on both the number and position of changepoints, and on the
parameters for each segment. Choice for the former will be discussed below. For the
latter, we will assume an exchangeable prior structure. Thus we introduce a family
of distributions p(θ|ψ), parametrised by hyperparameters ψ. Then, conditional on

ψ we have p(θ1:m+1|ψ) =
∏m+1
i=1 p(θi|ψ). Either we specify ψ, or the model is then

completed through an appropriate hyperprior on ψ. Note that the prior, p(θ|ψ),
can be interpreted as describing the variability of the parameters across segments.

For fixed ψ, if we have a segment consisting of observations ys:t for s < t, then
the segment marginal likelihood is defined as

Q(s, t;ψ) =

∫
p(ys:t|θ)p(θ|ψ)dθ. (1.1)

For the algorithms for Bayesian inference that we focus on, it is important that the
marginal likelihoods, Q(s, t;ψ), can be calculated for all s, t and ψ. For many mod-
els, this can be done analytically; whilst for others it may be possible to calculate
the marginal likelihoods numerically. In most cases, the assumption that we can
calculate Q(s, t;ψ) is equivalent to the assumption we can calculate the posterior
distribution of the parameter associated with the segment, given the start and end
of the segment. Thus in this case, if we can calculate the posterior for the posi-
tion and number of the changepoints, then we can easily extend this to include the
segment parameters as well.

To make this model concrete, we now give an important example which will be
used in the simulation studies below.
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1.1.2 Example: Piecewise Linear Regression

Assume that for each time-point t we have a d-dimensional covariate zt = (z
(1)
t , . . . , z

(d)
t ).

Our model fits a different linear regression model within each segment. The param-
eter for each segment consists of the parameters of the linear regressor and the

variance of the observations. We denote θi = (β
(1)
i , . . . , β

(d)
i , σ2

i ). For segment
i, we have p(y(τi−1+1):τi |θi) =

∏τi
t=τi−1+1 p(yt|θi), where, for t = τi−1 + 1, . . . , τi,

Yt|θi ∼ N
(∑d

j=1 z
(j)
t β

(j)
i , σ2

i

)
, and N (µ, σ2) denotes a Gaussian random variable,

with mean µ and variance σ2.
Figure 1.1 gives example realisations from these models. Note that special cases

of this model include piecewise polynomial models, where z
(j)
t = tj−1; and, when

d = 0, changepoint models for the variance of the time-series. Also by letting

z
(j)
t = yt−j we obtain piecewise auto-regression models. See [41, 12] for more details

of these models, and their applications.
Conditional on knowing the segments, inference via maximum likelihood esti-

mation can be performed analytically.
For a Bayesian analysis, we require a prior for θi. There are computational

advantages in choosing the conjugate prior for this model. If we introduce hyper-
parameters ψ = {a, b, η,H}, where a and b are scalars, η is a d-dimensional vector,
and H is a d× d matrix, then the conjugate prior is

σ2
i |a, b ∼ IG(a, b), (1.2)

(β
(1)
i , . . . , β

(d)
i )|σ2, η,H ∼ N (η, σ2H). (1.3)

Here IG denotes an inverse-gamma random variable, and N a multi-variate normal
random variable. Choice of these conjugate priors means that conditional on τi−1
and τi, the posterior for θi can be calculated analytically – it is from the same
inverse-gamma, multi-variate normal family. Also the marginal likelihood for a
segment (1.1) can also be calculated analytically [41].

1.2 Single Changepoint Models

We now describe a range of methods for detecting a single changepoint. In each
case we will focus on the model introduced above, and just briefly comment on
extensions to other models.

1.2.1 Likelihood-ratio based approach

A natural approach to detecting a single changepoint is to view it as performing
a hypothesis test. We define the null (H0) and alternative (H1) hypotheses for a
change as

H0 : No changepoint,m = 0.

H1 : A single changepoint,m = 1.

We now introduce the general likelihood-ratio based approach to test this hy-
pothesis. The potential for using a likelihood based approach to detect changepoints
was first proposed by [28] who derives the asymptotic distribution of the likelihood
ratio test statistic for a change in the mean within a sequence of normally dis-
tributed observations. The likelihood based approach has also been extended to
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Figure 1.1: Realisations of the piecewise linear regression model. (a) Change in (constant) mean;
(b) Change in variance; (c) piecewise AR model; and (d) piecewise quadratic mean. In all cases
the changepoints are at time-points 100, 250 and 425. For plots (a) and (d) the underlying mean
is shown.

changes in mean related to other distributional forms including gamma [30], ex-
ponential [25] and binomial [29]; and also to changes in variance within normally
distributed observations by [24] and [10].

Recalling our changepoint problem formulation above, we can construct a test
statistic which will decide whether a change has occurred. The likelihood ratio
method requires calculating the maximum log-likelihood value under both null and
alternative hypotheses. For the null hypothesis the maximum log-likelihood value
is just log p(y1:n|θ̂).

Under the alternative hypothesis, consider a model with a changepoint at τ ,
with τ ∈ {1, 2, . . . , n − 1}. Then the maximum log likelihood for a given τ (the
profile log-likelihood for τ) is

Prl(τ) = log p(y1:τ |θ̂1) + log p(y(τ+1):n|θ̂2).

The maximum log-likelihood value under the alternative is just maxτ Prl(τ). This
results in the test statistic

λ = 2
[
max
τ

Prl(τ)− log p(y1:n|θ̂)
]
.

The test involves choosing a threshold, c, such that we reject the null hypothesis if
λ > c. If we reject the null hypothesis, which corresponds to detecting a change-
point, then we estimate its position as τ̂ the value of τ that maximises Prl(τ).

Note that changepoint problems are not regular, so the usual asymptotic results
of the likelihood ratio statistic do not apply. Full derivations of the asymptotic dis-
tribution for the likelihood ratio test of univariate and multivariate normal, gamma,
binomial and poisson distributions are provided by [11]. These can be used to give
an approximate threshold for any required significance level.
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The likelihood-ratio framework can naturally extend to detecting changes in a
subset of the parameters; for example for the model in Example 1, we may be
interested in changes only in the regression parameters, or a specific subset of the
regression parameters. Such problems only require a change in the calculation of
the maximum likelihood for each model, with maximisation of θ1 and θ2 being done
over appropriate constraints for the parameters.

1.2.2 Penalised likelihood approaches

The use of penalised likelihood approaches have been popular within the change-
point literature (see for example [23] or [54]). The popularity of this approach
stems from parsimony arguments. These methods more naturally extend to the
multiple changepoint setting than does the likelihood-ratio statistic approach. Be-
low we outline a general approach for the detection of changepoints using penalised
likelihood.

We begin by defining the general penalised likelihood.

Definition 1. Consider a model Mk, with pk parameters. Denote the parameters
by Θk, and the likelihood by L(Θk). The penalised likelihood is defined to be:

PL(Mk) = −2 log maxL(Θk) + pkφ(n),

where φ(n) is the penalisation function, which is an non-decreasing function of the
length of the data, n.

The value ofMk that minimises PL(Mk) is deemed the most appropriate model.
Obviously the choice of model will depend on the choice of penalty function φ(n).
Various penalty functions can be considered, including Akaike’s information cri-
terion (AIC) [1], Schwarz information criterion (SIC) [42] and the Hannan-Quinn
information criterion [26]. These criteria are defined as follows:

AIC : φ(n) = 2

SIC : φ(n) = log n

Hannan-Quinn : φ(n) = 2 log log n.

Whilst the AIC is a popular penalty term, it has been shown that it asymptotically
overestimates the correct number of parameters. Thus as the SIC and Hannan-
Quinn criteria both asymptotically estimate the correct number of parameters, these
are generally preferred. (See [54] for details of the SIC case.)

For the changepoint problem described in Section 1.1.1,Mk corresponds to the
model with k changepoints. The associated parameter vector is Θk = (τ1:k, θ1:k+1),
which has dimension pk = k + (k + 1)dim(θ). For detecting a single changepoint
the calculation of the two penalised likelihoods corresponding to either one or no
changepoint, involves a similar likelihood maximisation step to that described in
Section 1.2.1.

For estimating a single changepoint, there is a close correspondence between the
penalised likelihood and the likelihood-ratio test approaches. Both involve com-
paring the maximum log-likelihood of the two models corresponding to one and no
changepoint. A changepoint is detected if the increase in log-likelihood under the
one changepoint model is greater than some threshold. The differences lie only in
how this threshold is calculated.
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1.2.3 Bayesian Methods

To perform a Bayesian analysis we need to specify a prior probability for there
being a changepoint, Pr(M = 1), and conditional on there being a changepoint, a
distribution for its position p(τ). Note that Pr(M = 0) = 1− Pr(M = 1).

Firstly consider the case where the hyperparameters ψ are known. In this case
it is straightforward to write down the posterior distribution in terms of marginal
likelihoods, Q(s, t), as defined in (1.1). The posterior is

Pr(M = 0|y1:n) ∝ Pr(M = 0)Q(1, n;ψ)

Pr(M = 1, τ |y1:n) ∝ Pr(M = 1)p(τ)Q(1, τ ;ψ)Q(τ + 1, n;ψ), for τ = 1, . . . , n− 1.

In the case on which we focus, where the marginal likelihoods can be calculated
analytically, this posterior is simple to calculate. It requires calculating the above
expressions to be evaluated and normalised to give the posterior probabilities. This
is an O(n) calculation. As mentioned above, in cases where we can calculate the
marginal likelihood, we can normally calculate analytically the conditional posterior
for segment parameters given the start and end of the segment. Thus we can extend
the above calculation to give the joint posterior of whether there is a changepoint,
its position if there is one, and the segment parameters.

If we focus on purely detecting whether there is a changepoint, then we get

Pr(M = 1|y1:n)

Pr(M = 0|y1:n)
=

Pr(M = 1)

Pr(M = 0)

(∑n−1
τ=1 p(τ)Q(1, τ ;ψ)Q(τ + 1, n;ψ)

Q(1, n;ψ)

)
.

The last term on the right-hand side is called the Bayes Factor. Thus the poste-
rior ratio of probabilities of one changepoint to no changepoint is the prior ratio
multiplied by the Bayes Factor. As such the Bayes Factor quantifies the evidence
in the data for the model with one changepoint, as opposed to the model with no
changepoint.

Note that the posterior distribution depends on ψ. In particular the choice of
ψ can have considerable effect on the posterior probability for a changepoint. The
reason for this is linked to Bartlett’s paradox [5], which shows that when comparing
nested models, the use of improper priors for the parameters in the more complex
model will lead to posterior of probability of one assigned to the simpler model.
Even when we do not use improper priors, choices of ψ that correspond to vague
priors for the segment parameters will tend to prefer the simpler model, that is
inferring no changepoint. We will return to this issue in the simulation study in
Section 1.4.

There are two approaches to deal with choosing ψ, in the absence of prior in-
formation. The first is to introduce a prior on ψ. In this case we can define the
marginal likelihood for ψ as

ML(ψ) = Pr(M = 0)Q(1, n;ψ) +

n−1∑
τ=1

Pr(M = 1)p(τ)Q(1, τ ;ψ)Q(τ + 1, n;ψ),

and let p(ψ) denote the prior. Then the marginal posterior for ψ is proportional
to p(ψ)ML(ψ), which could be explored using MCMC. Note that it is possible to
choose an improper prior for ψ, as this is a parameter common to both the no
changepoint and one changepoint models.

Computationally simpler is to adopt an empirical Bayes approach – and use the
data to get a point estimate for ψ. For example, optimisation algorithms can be
used to find the value of ψ that maximises ML(ψ), and then inference can be made
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conditional on this value for ψ. This approach has the disadvantage of ignoring the
effect of uncertainty in the choice of ψ.

We do not go into detail for either approach here, though we will return to
this issue when discussing Bayesian methods for multiple changepoint problems.
Also, in Section 1.4 we look empirically at and compare the different approaches
for dealing with no knowledge about ψ.

1.3 Multiple Changepoint Models

Many of the ideas for analysing single changepoint models can be adapted, at least
in theory, to the analysis of multiple changepoint models. However, the analysis
of multiple changepoint models is computationally much more challenging, as the
number of possible positions of m changepoints increases quickly with m. For
example, with 1, 000 data points there are just 999 possible positions of a single
changepoint, but 2×1023 sets of possibilities for 10 changepoints. Much of the focus
of the following sections is on the resulting computational challenge of detecting
multiple changepoints.

We first focus on two general search methods, which can be used to extend the
likelihood-ratio statistic approach to detecting multiple changepoints, and can be
used to efficiently perform the maximisation required in applying penalised likeli-
hood methods. We then introduce a new criteria for detecting changepoints, based
on minimum description length, and show how the latter of these search methods
can be used to find the optimal set of changepoints in this case. Finally we describe
how to efficiently perform a Bayesian analysis.

1.3.1 Binary Segmentation

The binary segmentation algorithm is perhaps the most established search algorithm
used within the changepoint literature. Early applications of the binary segmenta-
tion search algorithm include [43] and [44]. For details on the consistency of the
binary segmentation approach for estimating the true changepoint locations, τ1:m,
under various conditions, the reader is referred to the work of [49] and [48].

Binary segmentation can be used to extend any single changepoint method to
multiple changepoints. We begin by initially applying this detection method to the
whole data. If no changepoint is detected we stop, otherwise we split the data into
two segments (before and after the changepoint), and apply the detection method
to each segment. If a changepoint is detected in either, or both, segments, we split
these into further segments, and apply the detection method to each new segment.
This procedure is repeated until no further changepoints are detected.

Generic pseudo-code for one implementation of this is given in Algorithm 1.
This considers a general test statistic Λ(·), estimator of changepoint position τ̂(·),
and rejection threshold C. The idea is that the test statistic is a function of data,
such as the likelihood ratio statistic, and we detect a changepoint in data ys:t if
Λ(ys:t) > C. If we detect a changepoint, our estimate of its position, such as the
maximum likelihood estimate, is τ̂(ys:t). Within the code C denotes the set of
detected changepoints, and S denotes a set of segments of the data that need to be
tested for a changepoint. One iteration chooses a segment from S, and performs
the test for a changepoint. For a negative result the segment is removed from S.
Otherwise a changepoint is detected and added to C, and the segment is replaced
in S by two segments defined by splitting the original segment at the changepoint.
Note in step 3(b), r is just the position of the changepoint in the original data
set, calculated from τ̂(ys:t), the position of the changepoint in the segment [s, t].
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In steps 3(c) and 3(d) we only add new segments to S if they contain at least 2
observations: otherwise the new segments can not contain further changepoints.

Algorithm 1 The Generic Binary Segmentation Algorithm to find all possible change points.

Input: A set of data of the form, (y1, y2, . . . , yn).
A test statistic Λ(·) dependent on the data.
An estimator of changepoint position τ̂(·).
A rejection threshold C.

Initialise: Let C = ∅, and S = {[1, n]}

Iterate while S 6= ∅
1. Choose an element of S; denote this element as [s, t].

2. If Λ(ys:t) < C, remove [s, t] from S.

3. If Λ(ys:t) ≥ C then:

(a) remove [s, t] from S;

(b) calculate r = τ̂(ys:t) + s− 1, and add r to C;
(c) if r 6= s add [s, r] to S;

(d) if r 6= t− 1 add [r + 1, t] to S.

Output the set of change points recorded C.

Binary segmentation is a fast algorithm, that can be implemented with computa-
tional cost O(n) where n is the length of data. However, it can be difficult to choose
C appropriately – and different choices of C can lead to substantial differences in
the estimate of the number of changepoints. An alternative approach to detecting
multiple changepoints by recursively applying a single changepoint method is given
in [31].

1.3.2 Segment Neighbourhood Search

[7] and [6] consider an alternative search algorithm for changepoint detection, namely
the Segment Neighbourhood approach (also referred to as Global Segmentation).
The basic principle of this approach is to define some measure of data fit, R(·) for a
segment. For inference via penalised likelihood we would set R(ys:t) to be minus the
maximum log-likelihood value for data ys:t given it comes from a single segment.
That is

R(ys:t) = − log p(ys:t|θ̂). (1.4)

We then set a maximum number of segments, M , corresponding to at most M − 1
changepoints.

The segment neighbourhood search then uses a dynamic programming algorithm
to find the best partition of the data into m + 1 segments for m = 0, . . . ,M − 1.
The best partition is found by minimising the cost function

∑m
i=0R(yτi:τi+1

) for
a partition with changepoints at positions τ1, τ2, . . . , τm. Thus for R(·) defined in
(1.4), this would give the partition of the data with m changepoints that maximises
the log-likelihood. The algorithm will output the best partition for m = 0, . . . ,M −
1, and the corresponding minimum value of the cost function, which we denote cm1,n.

For the choice of R(·) given by (1.4), 2cm1,n will be minus twice the log-likelihood.
So choosing m based on penalised likelihood is achieved by choosing m to minimise
2cm1,n+pmφ(n); where pm is the number of parameters in the model with m change-
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points, and φ(n) is the penalty function. The best partition found by the algorithm
for that value of m gives the positions of the detected changepoints.

Generic pseudo-code for this approach can be seen in Algorithm 2, and is based
on a dynamic programming approach described by [2]. The drawback of this ap-
proach is it’s computational cost. The segment neighbourhood search is an O(n2)
computation; compared with O(n) for the binary segmentation algorithm. However
this cost does result in improved predictive performance in simulation studies [6].

Algorithm 2 The Generic Segment Neighbourhood Algorithm to find up to R − 1 change
points.

Input: A set of data of the form, (y1, y2, . . . , yn).
A measure of fit R(·) dependent on the data which needs to be minimised.
An integer, M − 1 specifying the maximum number of change points to find.

Initialise: Let n = length of data.
Calculate q1i,j = R(yi:j) for all i, j ∈ [1, n] such that i < j.

Iterate for m = 2, . . . ,M

1. Iterate step 2 for all j ∈ {1, 2, . . . , n}.
2. Calculate qm1,j = minv∈[1,j) (qm−1

1,v + q1v+1,j).

3. Set τm,1 to be the v that minimises (qm−1
1,v + q1v+1,n).

4. Iterate step 5 for all i ∈ {2, 3, . . . ,M}.

5. Let τm,i to be the v that minimises (qm−i−1
1,v + q1v+1,cpm,i−1

).

Output For m = 1, . . . ,M : the total measure of fit, qm1,n for m−1 change points and the location
of the change points for that fit, τm,1:m.

1.3.3 Minimum Description Length

[12] propose the use of the minimum description length (MDL) principle to estimat-
ing changepoints. The basic idea is that the best fitting model is one which enables
maximum compression of the data. For a given set of changepoints we can estimate
what is called the code-length of the data. Loosely, this code length is the amount
of memory space needed to store that data. We thus estimate the number and
position of the changepoints as the set of changepoints which have the minimum
code-length. See [12] and references therein for further background to MDL.

Our aim here is to show how finding the best set of changepoints under MDL can
be achieved using the segment neighbourhood algorithm. This guarantees finding
the optimal set of changepoints according to the MDL criterion. By comparison,
[12] use a complicated genetic algorithm to fit the model.

For concreteness we will focus on the model of Section 1.1.2. In this case, up to
proportionality, the code-length for a set of m changepoints, τ1, . . . , τm is defined
as

CL(m; τ1:n) = −
m+1∑
i=1

log p(y(τi−1+1):τi |θ̂i)+log(m+1)+(m+1) log(n)+

m+1∑
i=1

d+ 1

2
log ni,

where ni = τi − τi−1 is the length of segment i, and d + 1 is the dimension of the
parameter vector associated with each segment. (See [12] for the derivation.)

Now denote R(ys:t) = − log p(ys:t|θ̂) + d+1
2 log(t − s + 1). We can re-write the
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code-length as

CL(m; τ1:n) =

m+1∑
i=1

R(y(τi−1+1):τi) + log(m+ 1) + (m+ 1) log(n).

Thus we can use the segment neighbourhood algorithm to calculate

cm1,n = min
τ1:m

m+1∑
i=1

R(y(τi−1+1):τi),

for m = 0, . . . ,M − 1. We then estimate the number of changepoints as the value
m which minimises cm1,n + log(m+ 1) + (m+ 1) log(n). The segment neighbourhood
algorithm also outputs the optimal set of changepoints.

1.3.4 Bayesian Methods

For a Bayesian analysis we need to specify a prior for the number and position
of changepoints. There are two approaches. The first is to specify a prior on the
number of changepoints, and then a prior for their position given the number of
changepoints [22]. The second is to specify the prior for the number and position of
changepoints indirectly through a distribution for the length of each segment. The
latter has computational advantages [17] and is more natural in many applications.
For example it means that the prior does not need to be adapted based on the period
of time over which the time-series is observed. It is also easier to use inferences from
similar data sets, which maybe of different length, to construct appropriate priors.
We thus focus solely on this form of prior.

Formally we introduce a probability mass function, denoted g(·;ψ), to be the
mass function for the length of a segment. We allow there to be unknown parameters
of this mass function, and these will be part of the hyperparameters of the model:
hence the dependence on ψ. Associated with the mass function will be a survivor
function S(·;ψ), which satisfies S(t;ψ) =

∑∞
i=t g(i;ψ).

With this construction, the prior probability for m changepoints at positions
τ1, . . . , τm will be

p(m, τ1:m|ψ) =

(
m∏
i=1

g(τi − τi−1;ψ)

)
S(τm+1 − τm;ψ),

where as before we set τ0 = 0 and τm+1 = n. This prior corresponds to a product-
partition model [3, 4].

A common choice for the distribution of the segment lengths is the geometric
distribution with parameter p. In this case g(t;ψ) = p(1−p)t−1, S(t;ψ) = (1−p)t−1,
and p(m, τ1:m|ψ) = pm(1−p)n−m−1. Note that this corresponds to a binomial prior
on the number of changepoints, and a conditional uniform prior on their position.

We now derive the posterior conditional on a fixed value of ψ. Under the assump-
tion that we can calculate the segment marginal likelihoods (1.1), we can integrate
out the parameters associated with each segment to obtain the following marginal
posterior for the number and position of changepoints

p(m, τ1:m|ψ, y1:n) ∝

(
m∏
i=1

g(τi − τi−1;ψ)Q(τi−1 + 1, τi;ψ)

)
×S(τm+1 − τm;ψ)Q(τm + 1, τm+1;ψ). (1.5)
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The normalising constant is just the marginal likelihood for ψ. As mentioned above,
for models where we can calculate the segment marginal likelihoods we can usu-
ally simulate from the posterior distribution of the segment parameters given the
changepoint positions. Thus if we can generate samples from this posterior on the
number and position of the changepoints, it is straightforward to sample from the
joint posterior of the changepoints and the segment parameters. While MCMC [36]
and reversible jump MCMC methods [22] can be used to generate (approximate)
samples from the posterior (1.5). These methods can be computationally intensive,
and lead to difficulties of diagnosing convergence of the MCMC algorithm. For
example the analysis of the coal-mining disaster data in [22] is incorrect due to the
MCMC algorithm not being run for long enough [17].

Instead, we describe a computationally efficient algorithm that can generate iid
samples from this posterior. The algorithm we describe has two stages. The first is
a forward pass through the data; the second involves simulating the changepoints
backwards in time. The algorithm is thus related to the forward-backward algorithm
for hidden Markov models [18]. However the basic idea underlying this approach
dates back to work by [53]; see also the methods of [3] and [38]. The version we
give is suitable for online analysis of data.

For this algorithm we introduce a variable Ct to be the position of the most recent
changepoint prior to time t. Thus Ct ∈ {0, 1, . . . , t − 1}, with Ct = 0 denoting no
changepoint prior to t. Note that either Ct = t− 1, or Ct = Ct−1, depending on
whether or not there is a changepoint at time t−1. The forward algorithm calculates
Pr(Ct = i|y1:t, ψ) for i = 0, . . . , t − 1. It is based on the following recursion. For
t = 2, . . . , n we have

Pr(Ct = i|y1:t, ψ) ∝ Pr(Ct−1 = i|y1:t−1, ψ)

(
S(t− i;ψ)

S(t− i− 1;ψ)

)(
Q(i+ 1, t;ψ)

Q(i+ 1, t− 1;ψ)

)
,

(1.6)

for i = 0, . . . , t− 2; and

Pr(Ct = t− 1|y1:t, ψ) ∝ Q(t, t;ψ)

t−2∑
j=0

Pr(Ct−1 = j|y1:t−1, ψ)

(
g(t− j − 1;ψ)

S(t− j − 1;ψ)

)
.

(1.7)

Recursion (1.6) corresponds to no changepoint at time t − 1. Thus Ct = Ct−1
and hence the final two terms correspond to the prior probability of this, and
the likelihood of the new observation given Ct = i respectively. Recursion (1.7)
corresponds to a changepoint at time t−1. In which case Q(t, t;ψ) is the likelihood
of the observation, and the sum is the probability of a changepoint at t − 1 prior
to observing yt. These recursions are initiated with Pr(C1 = 0|y1) = 1. For more
details of the derivation see [19]. Details of how the output from these recursions
can be used to calculate the marginal likelihood for ψ are given in [18].

The backward step generates samples from the posterior of the position and
number of changepoints. It requires that the probabilities Pr(Ct = i|y1:t) have
been stored for all t = 1, . . . , n and i = 0, . . . , t − 1. To generate one sample of
changepoints we first simulate the last changepoint from the distribution of Cn
given y1:n. Denote the changepoint position by t. Then if t > 0 we can simulate
the next changepoint back in time, Ct, from the conditional distribution

Pr(Ct = i|y1:n, Ct+1 = t, ψ) ∝ Pr(Ct = i|y1:t, ψ)

(
g(t− i;ψ)

S(t− i;ψ)

)
, for i = 1, . . . , t− 1.
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(1.8)

(Note the event Ct+1 = t just corresponds to there being a changepoint at t.)
The calculation of this probability mass function uses the fact that conditional on a
changepoint at t, the data after this changepoint is independent of the changepoints
before t. We recursively simulate changepoints backwards in time from (1.8) until
we first simulate Ct = 0.

Algorithm 3 Algorithm for simulating from the posterior distribution of changepoint positions.

Input: A set of data of the form, (y1, y2, . . . , yn).
A value for the hyperparameters ψ.
Survivor functions for segment lengths S(·;ψ).
A weight function W (·;ψ), such that W (ys:t;ψ) = Q(ys:t;ψ)/Q(ys:t−1;ψ) for t > s,
and W (ys;ψ) = Q(ys;ψ); where Q(·;ψ) is defined in (1.1).
The number of samples from the posterior, N .

Initialise: Let t = 2. Let γ
(1)
0 = 1.

Iterate for t = 2, . . . , n

1. For i = 0, . . . , t− 2; set

γ
(t)
i = γ

(t−1)
i

(
S(t− i;ψ)

S(t− i− 1;ψ)

)
W (yi+1:t;ψ).

2. Set

γ
(t)
t−1 = W (yt;ψ)

t−2∑
j=0

γ
(t−1)
j

(
S(t− j − 1;ψ)− S(t− j;ψ)

S(t− j − 1;ψ)

)
..

3. Normalise γ(t)s. Set A =
∑t−1

i=0 γ
(t)
i , and for i = 0, . . . , t− 1 set γ

(t)
i = γ

(t)
i /A.

Iterate for j = 1, . . . , N

1. Simulate from the distribution with mass γ
(n)
i associated with realisation i for i = 0, . . . , n−

1; denote the realisation by t.

2. If t > 0, set Cj = {t}; otherwise Cj = ∅.
3. While t > 0 repeat steps 4 and 5.

4. Simulate from the distribution with mass proportional to

γ
(t)
i

(
S(t− i;ψ)− S(t− i+ 1;ψ)

S(t− i;ψ)

)
,

associated with realisation i for i = 0, . . . , t− 1; denote the realisation by t.

5. If t > 0, update Cj = {t, Cj}
Output the N sets of changepoints, C1, . . . , CN .

Full details of the forward recursion and backward simulation algorithm are

given in Algorithm 3. In this algorithm γ
(t)
i denotes Pr(Ct = i|y1:t).

The algorithm has a computational and storage cost that is quadratic in n,
the number of data points. This is because the support of Ct increases linearly
with t. However, for large t, the majority of the probabilities Pr(Ct = i|y1:t)
are negligible. Hence computational and storage savings can be made by pruning
such probabilities. See [19] for a principled way of implementing such pruning,
which results in an algorithm with computational and storage costs that are O(n).
Pruning does introduce approximation error, but empirical results [19] suggest these
approximations are negligible. The resulting algorithms can analyse large data
sets efficiently, see [19] and [20] for applications to genomic data. Even in these
applications, where n is of the order of tens of thousands, and there may be hundreds
of changepoints, generating thousands of samples from the posterior takes a matter
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of seconds.
Thus we have a simple, efficient and accurate method for Bayesian inference in

the case that the hyperparameters, ψ, are known. In cases where this is not true,
we can either introduce a prior on ψ or estimate ψ from the data. The former is the
fully-Bayesian approach, but comes at a computational cost. Inference will require
the use of MCMC, or related techniques. The above algorithm can be used within
MCMC to help mixing. However, this can be computationally expensive – as the
forward recursions will need to be solved for each proposed new value for ψ. (See
[17] for discussion of this and suggestions for efficiently implementing an MCMC
approach.) The alternative is to estimate ψ from the data – for example through
maximising the marginal likelihood. Performing the maximisation is often possible
via a Monte Carlo Expectation Maximisation (EM) algorithm [50]. Results in [16]
suggest that such an approach loses little in terms of statistical efficiency, but is
computationally more efficient than the fully Bayesian solution of introducing a
prior on ψ.

1.4 Comparison of Methods

We now compare different changepoint methods for the problem of detecting a
change in variance. In general detecting changes in variance is more challenging
than detecting changes in mean, and is important in applications such as finance
and environmental applications [34]. Compared to the change in mean problem,
[10] observe the detection of changes in variance has received comparatively little
attention. We will look in turn at the problem of detecting a single changepoint
and multiple changepoints.

1.4.1 Single Changepoint Model

We first present a simulation study which aims to compare the frequentist and
Bayesian methods for detecting a single changepoint, and to look at how specifi-
cation of the hyperparameter ψ can affect the Bayesian inferences. We base our
study on a specific case of the model described in Example 1. Each data point has
a normal distribution with mean 0, but we allow for the possibility of the variance
changing at a changepoint. Details of the analytic calculations of maximum like-
lihood estimates, posterior distributions and marginal likelihoods for the segments
are given in the Appendix.

In particular we simulated time-series consisting of 200 observations. For the
first 100 data points, the observations were iid from a standard normal distribution.
The second 100 data points were iid from a normal distribution with mean 0 and
variance σ2. We considered 6 scenarios, each with different values of σ: σ2 = 1,
1.25, 1.5, 2, 3 and 4. The first scenario corresponds to no changepoint, as the
distribution of the data is identical for all 200 data points and is used to estimate
false-positive rates for different methods. The remaining scenarios correspond to
increasingly large changes. We simulated 10,000 independent data sets for each
scenario.

Comparison of Method

We first looked at the performance of various methods to detect a changepoint
within a series. For detecting a changepoint, each method is based upon comparing
a statistic, such as the Bayes Factor or the likelihood ratio statistic, with a threshold
value. The threshold value will affect both the false-positive rate and also the
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proportion of true changepoints (true-positives) detected for a given value of σ2.
By varying this threshold we can plot how the latter varies with the former, and we
give the results in a so-called receiver operating characteristic (ROC) curve. This
enables us to calibrate the comparison of methods, so we compare the true-positive
rate of different methods for a common false-positive rate.

For the Bayesian implementation the hyperparameters, ψ, are the parameters of
the inverse-gamma distribution for the segment variance. Initially we set the shape
parameter to be 2, and the scale parameter so that the mean of the distribution
was the sample variance of the data. The results, in terms of the ROC curve, were
robust to these choices; but we investigate below the effect of the choice of ψ on the
performance of the Bayesian approach.
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Figure 1.2: (a) ROC curves for the Bayesian (full-lines) and frequentist (dashed-lines) approaches.
Each pair of lines corresponds to a different value of σ, from bottom to top: 1.25, 1.5, 2, 3 and 4.
(b) Nominal false-positive rate versus empirical false-positive rate for the likelihood-ration method.
(c) Bayes Factor threshold versus empirical false-positive rate for Bayesian method.

Results are shown in Figure 1.2(a). Both the likelihood ratio and penalised like-
lihood methods (where we vary the penalty) give identical ROC curves, see Section
1.2.2, so we plot a single curve for both these. The results show similar perfor-
mance for the Bayesian and frequentist approaches, with the Bayesian method hav-
ing slightly greater power, particularly for intermediate values of σ. The intuition
behind this is that for detecting change in variance there is normally substantial un-
certainty about the position of the changepoint. The Bayes factor averages over this
uncertainty, so allows for the accumulation of evidence for a changepoint; where as
frequentist methods depend only on the fit for the most likely changepoint position
– and as such ignores any information from other possible changepoint locations.

Implementation of Methods

The comparison above looks at overall performance of methods via an ROC curve,
which look at false and true positive rates for a range of threshold values for each
method. However, when implementing a method in practice we need guidelines for
choosing this threshold.

For the likelihood-ratio approach, there is clear guidance on choosing the thresh-
old based on asymptotic results which give nominal false-positive rates for different
threshold values [11]. In Figure 1.2(b) we plot empirical false-positive rates for a
range of nominal false-positive rates. For the size of data we analysed, the nominal
false-positive rates over-estimate the true false positive-rates, typically by a factor
of around 2.

For comparison, we calculated the false-positive rates for the three penalised
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likelihood methods introduced in Section 1.2.2. These are AIC, SIC and Hannan-
Quinn. For our data n = 200 so φ(n) = 2, 5.3 and 3.3 respectively. The false-positive
rates were 70%, 4.4% and 26% in turn. In particular this suggests that the penalty
used in AIC is too small, and results in over-detection of changepoints.

For the Bayesian approach, the test is affected by (i) the prior probability of a
changepoint; (ii) a threshold on the posterior probability for detecting a change-
point; and (iii) the choice of ψ. Strictly (ii) should be specified by considering the
relative cost of falsely detecting a changepoint to missing one. The larger this is, the
higher the threshold. However, in many cases it can be difficult to specify this, and
also often there is little prior information to guide (i). In these cases, it is common
to use general rules of thumb for the Bayes factor [33].

In practice, the most important choice is (iii), the prior for ψ. Furthermore it
can be hard to predict the effect that this choice will have on the properties of the
test. In particular we want to guard against choosing values of ψ that correspond
to weakly informative priors which will lead to preference for the model for no
changepoint.

To investigate the effect of the choice of ψ we repeated the above analysis but
for a range of values for ψ, the parameters of the inverse gamma distribution for
the variance. In each case we chose parameters so that the mean of the inverse
gamma distribution was equal to the empirical mean, and just considered choice
of the shape parameter, a. The choice a ≈ 0 corresponds to a weakly informative
prior. Results are given in Figure 1.3(a). We observe that small and large values of
a lead to the detection of a changepoint in fewer data sets. For the Bayesian method
to detect changepoints well we need a value of a that leads to a prior distribution
that is roughly consistent with the variation in σ across the two segments.

As discussed in Section 1.2.3, the two approaches to choosing ψ based on the data
are to introduce a hyperprior on ψ or an empirical Bayes approach of estimating ψ
by maximising the marginal likelihood. We tried both approaches. They provided
almost identical results, so here we give the results for the empirical Bayes approach.
For a threshold value of 10 for the Bayes factor for the model with no changepoints
against the model with one, the false positive rate was 0.005, with, for increasing
values of σ, true-positive rates of 0.02, 0.13, 0.63, 0.98 and 1.0.

For this approach we looked at how the empirical false-positive rate varies with
the threshold used for the Bayes Factor. This is shown in 1.2(c). Note that it
is difficult to predict the form of the relationship beforehand. For this example, a
threshold of around 2, corresponding to twice as much evidence for one changepoint
as opposed to no changepoints, corresponds to a false positive rate of 5%. Note also
that a threshold of 1, which corresponds to equal evidence in the data for either
one changepoint or no changepoints, has a false-positive rate much lower than 0.5,
which is what we may have predicted.

1.4.2 Multiple Changepoint Model

We now consider analysis of multiple changepoint models. We aim to look at the
relative performance of the different methods and to quantify what affects the power
to detect changepoints.

As in the single changepoint case, we simulated data under a model where the
variance changes across segments. We simulated time-series consisting of 2,000 data
points. Each data set contained 10 changepoints, which were uniformly distributed
subject to the constraint that each segment contained at least 40 observations.
Within each segment, the observations were iid draws from a normal distribution
with mean 0 and common variance. The distribution of the segment variances were
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Figure 1.3: (a) Proportion of data sets with Bayes factor for no changepoint > 10, as a function of
a, the shape parameter of the inverse Gamma distribution. Each lines corresponds to a different
value of σ, bottom to top: 1.0, 1.25, 1.5, 2, 3 and 4. (b) ROC curve for multiple changepoint
methods. Bayesian method (black full line); binary segmentation based on likelihood-ratio test
(black dotted line); binary segmentation using Bayes Factor (grey dashed line); the [31] approach
for segmentation based on the likelihood-ratio test (grey full line); and penalised likelihood (black
dashed line). The square dot corresponds to MDL.

log-normal, and the parameters of the log-normal distribution chosen so that 95%
of variances lay within the interval [1/10, 10]. We simulated 1,000 independent data
sets.

The distribution of segment variances was specifically chosen to be different
from the inverse-gamma distribution used by the Bayesian method. Also, when
implementing the Bayesian approach we assumed a geometric distribution of seg-
ment lengths and thus did not use the information that all segments contained at
least 40 observations. This avoids any bias towards the Bayesian approach through
simulating data from exactly the same class of models that the data is analysed
under.

When implementing the Bayesian method we used an empirical Bayes approach,
estimating hyper-parameters based on maximising the marginal likelihood. The
marginal likelihood was maximised using a Monte Carlo EM algorithm.

Comparison of Methods

Firstly we compared different methods based on ROC curves. Making a comparison
is non-trivial as the output of Bayesian and frequentist approaches differ. The
former gives posterior probabilities for changepoints at each location, while the
latter return a list of inferred changepoint positions. The following approach was
used, which gives comparison between false and true positive rates for both methods.

For the Bayesian approach we counted a changepoint as detected if the pos-
terior probability of a changepoint within a distance of 20 time-points either side
of the true position was greater than a pre-specified threshold. For false positives
we considered non-overlapping windows of similar size that did not contain a true
changepoint. A false-positive related to a window for which the posterior probabil-
ity of a changepoint was above the threshold. For the frequentist methods we used
a similar approach. Changepoints were considered detected if we inferred a change-
point with a distance of 20 time-points of the true position. We then considered
the same non-overlapping windows which did not contain a changepoint, counting
a false positive for every window in which we inferred a changepoint. The false-
positive rate thus estimates the probability that we estimate there is a changepoint
within a randomly chosen window that contains no changepoint.
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Results are given in Figure 1.3(b). We compared the Bayesian approach with a
number of frequentist methods. The latter included penalised likelihood and MDL
using the segment neighbourhood algorithm, and binary segmentation using the
likelihood-ratio test. We also implemented binary segmentation with a test based
on Bayes factors [52], and the alternative segmentation strategy of [31], implemented
with the likelihood ratio test.

There are a number of features of the results that stand out. Firstly, the uni-
formly most powerful approach is the full-Bayesian method. This approach per-
forms particularly well for small false-positive rates. Secondly, jointly estimating the
changepoints, as in the full-Bayesian method or the penalised likelihood approach,
performs better than recursively applying single changepoint detection methods
using binary segmentation or the approach of [31]. This supports the results of [6].

Thirdly of the two approaches for recursively applying single changepoint meth-
ods, that of [31] performed better than binary segmentation. This is perhaps a little
surprising, as this method is used much less in the literature. Finally we notice that
although the Bayesian method performed better in the single changepoint simula-
tion study, there is very little difference between the binary segmentation approach
that used likelihood ratio and the one that used Bayes Factors.

While most approaches can be implemented to give ROC curves, MDL results in
a single pair of false-positive and false-negative rates. This pair lies on the penalised
likelihood line, and corresponds very closely to the results for penalised likelihood
using SIC. Intuitively, this similarity is not surprising as the minimisation criteria
for MDL and SIC are very similar (see Sections 1.2.2 and 1.3.3). We also note that
using the AIC criteria performed very poorly, detecting over 50 changepoints for
each data set. This suggests that the AIC penalty is not large enough.

Factors affecting power

Finally we investigated which factors affect the ability to detect a changepoint,
and how this varies across methods. We considered two possible factors, firstly the
change in variance and secondly the size of segments either side of the changepoint.

Not surprisingly, the former has an important effect on the ability to detect
changepoints. In Figure 1.4(a) we plot, for each changepoint, the posterior proba-
bility of a changepoint against the factor by which the variance changes across the
changepoint. The former is again calculated by looking for a changepoint within a
window which contains all locations a distance of 20 or less from the changepoint
position. A change in variance by a factor of 2 has an average posterior probabil-
ity of about 0.5. While for changes by a factor of 5 or more results in posterior
probabilities that are very close to 1.

We then compared power at detecting a changepoint against change in variance.
To make the comparison fair, for the Bayesian approach we detect a changepoint if
the posterior probability within a window is greater than a threshold. Results for
the Bayesian method, MDL and binary segmentation using the likelihood ratio test
are compared in Figure 1.4(b). The threshold for the Bayesian approach and for
the likelihood ratio test were chosen so that both methods had similar false-positive
rates to MDL. The Bayesian approach and MDL have similar power curves, but with
evidence that the Bayesian method does better at detecting changepoints when the
variance changes by a factor of between 2 and 5. The binary segmentation approach
does substantially worse than the other two methods for changepoints across which
the variance changes a by factor of 3 or more.

The size of segment had little effect on the probability of detection of a change-
point. Correlation of segment sizes against posterior probability of a changepoint
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Figure 1.4: (a) Plot of posterior probability of a changepoint against the factor by which the
variance changes across the changepoint for each changepoint. A smoothed estimate is given
by the line. (b) Plot of power of detecting a changepoint against the factor by which variance
changes: Bayesian approach (black full line); MDL (grey dashed line); and binary segmentation
with likelihood ratio test (black dashed line).

was around 5%. Similarly small correlation between segment size and detection of
changepoints were found for the non-Bayesian methods.

1.5 Conclusion

We have reviewed a number of ways of detecting changepoints, comparing their per-
formance on the problem of detecting changes in variance in a time-series. Analysis
of changepoint models is a large area of research, and we have not been able to
cover all methods for analysing such models. Examples of alternative approaches
include non-parametric methods [39, 40] and methods for online detection based on
decision theory [47, 13].

The simulation result suggests that Bayesian methods are the most suitable for
this application. One aspect of a Bayesian analysis that we have not reflected on is
that the output is a distribution over the number and position of the changepoints.
Thus Bayesian methods have the advantage of more easily quantifying uncertainty
in changepoint positions than alternative methods. Furthermore, if interest lies in
estimating the underlying segment parameters (e.g. how the variance changes over
time), a Bayesian approach naturally enables the uncertainty in the changepoints
to be taken into account. One disadvantage is that it is harder to summarise or
represent the posterior distribution, as compared to methods which output a set
of predicted changepoints. One approach is to calculate the most likely (so-called
MAP) set of changepoints, which can often be calculated efficiently [9, 16]. However
even here there are alternative ways of defining the MAP set of changepoints which
can give different results in practice [16].

The main issue when implementing a Bayesian analysis is the choice of priors.
For the models we consider here a computationally convenient, yet accurate ap-
proach, is to estimate hyperparameters of the prior distributions by maximising
the marginal likelihood. This approach appears particularly suitable to multiple
changepoint models where there can be substantial information about the hyperpa-
rameters due to the variation in parameters across the multiple segments.
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When analysing multiple changepoint models, there are computational consider-
ations related to searching for the best set of changepoints or exploring the posterior
distribution. For the class of models we focussed on, both of these can be done ex-
actly using either the segment neighbourhood algorithm of Section 1.3.2; or the
forward-backward algorithm of Section 1.3.4. Simulation results suggest that using
these approaches results in better detection of changepoints than using approximate
methods such as binary segmentation. Whilst a complicated genetic algorithm is
used to detect changepoints using MDL in [12], we showed that the segment neigh-
bourhood algorithm can be applied for this criteria.

One disadvantage of both the segment neighbourhood algorithm and the forward-
backward algorithm is that their computational cost is O(n2). Approximations to
the latter have been suggested in [19], which results in an accurate algorithm whose
cost is O(n). One profitable area of future research would be to construct a similar
approximate version of the segment neighbourhood algorithm with O(n) computa-
tional cost. This is particularly important for applying this approach to analysing
the large data sets, such as those currently being analysed in bioinformatics.

A further disadvantage of these two algorithms is that the rely on nice properties
of the model. Changepoint models which have strong dependence across segments
cannot be analysed by either of these two algorithms. In this case alternatives, such
as binary segmentation, MCMC or genetic algorithms, would need to be used to
fit models. However, our recommendation is that for models with the appropriate
independence properties that these two approaches should be the method of choice
for fitting changepoint models.
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Appendix

Here we give details for estimating segment parameters, conditional on the start
and end of the segment, for change in variance model used in the simulation study.

Assume throughout that the segment consists of observations ys:t = (ys, . . . , yt),
for t > s. There is a single segment parameter, the variance, which we will de-
note by σ2. The model assumes that within the segment we have conditionally
independent observations with yi|σ2 ∼ N (0, σ2), for i = s, . . . , t. The maximum
likelihood estimator of the parameter is σ̂2 = 1

t−s+1

∑t
i=s y

2
i . The result maximum

log-likelihood value is p(ys:t|θ̂) = −n2
{

log(2π)− log σ̂2 − 1
}

.
For the Bayesian analysis, we have an inverse-gamma prior for σ2 with hyper-

parameters ψ = (a, b). The posterior distribution is

σ2|ys:t ∼ IG

(
a+

(t− s+ 1)

2
, b+

1

2

t∑
i=s

y2i

)
,

with marginal likelihood

Q(s, t;ψ) = (2π)(t−s+1)/2 Γ(a+ (t− s+ 1)/2)ba

Γ(a)(b+ 1
2

∑t
i=s y

2
i )a+(t−s+1)/2)

.
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