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Metric Learning...

..for Discrete-Event Simulation

Given the current state of a simulation model, we want to predict something
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2AA, about its future performance:

e How long should a customer expect to wait given the system state on their arrival?

e Do we expect some condition (e.g. queues at full capacity) to be reached in the

e Distance calculations among data
points are fundamental to many ma-
chine learning techniques.

—E.g. nearest neighbour (NN) pre-
dictions, clustering, information

retrieval...
e Metric learning tunes a problem- 8
specific distance metric from super- E
vised data.

The Data

.. e.g. queue size
o x| <
multivariate e o. number of
system state busy servers
finite state

X ek = {b1, by, ..., bm} space
stochastic
outcome > Ye y:{O,l,...}

We observe pairs (x,y) € X X Y as the simulation runs.
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We want to find a distance metric d: X X X — R which re-
flects similarity of the observed class distributions ¢(y|b;).
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tance for a INN binary classifier.

tion space. Colour denotes ¢(Y=1|x),
and size denotes ¢(x).

next 7' time units?

We can use metric learning to improve the performance of NN predictions.

For these problems, the input (the system state) will typically be multivari-
ate and discrete, and the output (the future performance) will be stochastic.
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The Method

da(b, by) = ||A(by — by)|lo <

Euclidean distance
after linear
transformation

Continuously model the NN distribution under d 4:

Cexp{—da(b;, b;)*}
Dk Ok exp{—da(by, by)*}

probability b,
sNNtob, — = P~

define p; =0

softmax over distances
..this formulation is based on [2]

model b)) =S o dlylb) oy, by

estimates

optimisation —> mthZqA(bl) Z q(y|by) log p(y|bi)
l y
This minimises the expected, under ¢x, KL divergence from

py|x to ¢y|x. We can view p(y|b;) as a kernel estimate for
q(y|b;) , with d4 in a Gaussian kernel.
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