Metric Learning with Stochastic Data

Graham Laidler, Lucy Morgan, Barry Nelson, Nicos Pavlidis

Metric Learning...

- Distance calculations among data points are fundamental to many machine learning techniques.
 - E.g. nearest neighbour (NN) predictions, clustering, information retrieval...
- Metric learning tunes a **problemspecific** distance metric from **supervised data**.

...for Discrete-Event Simulation

Given the **current state** of a simulation model, we want to **predict** something about its **future performance**:

- How long should a customer expect to wait given the system state on their arrival?
- ullet Do we expect some condition (e.g. queues at full capacity) to be reached in the next T time units?

We can use metric learning to **improve** the performance of NN predictions.

For these problems, the **input** (the system state) will typically be **multivariate** and **discrete**, and the **output** (the future performance) will be **stochastic**.

The Data

multivariate system state
$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \end{bmatrix}$$
 e.g. queue size e.g. number of busy servers

 $oldsymbol{X} \in \mathcal{X} = \{oldsymbol{b}_1, \ oldsymbol{b}_2, \ \dots, \ oldsymbol{b}_m\}$ finite state space

stochastic outcome $Y \in \mathcal{Y} = \{0, 1, \dots\}$

We observe pairs $(\boldsymbol{x},y) \in \mathcal{X} \times \mathcal{Y}$ as the simulation runs.

the data ...
$$\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} q(\boldsymbol{x},y) \longleftarrow \text{unknown distribution}$$
 ... as
$$C_l^y = |\{i \colon \boldsymbol{x}_i = \boldsymbol{b}_l, y_i = y\}|$$
 counts
$$C_l = |\{i \colon \boldsymbol{x}_i = \boldsymbol{b}_l\}|$$

$$MLEs \longrightarrow \hat{q}(y|\boldsymbol{b}_l) = \frac{C_l^y}{C_l}$$

We want to find a distance metric $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which reflects **similarity** of the observed **class distributions** $\hat{q}(y|\boldsymbol{b}_l)$.

The Method

Euclidean distance $d_A(\boldsymbol{b}_l,\boldsymbol{b}_h) = \|A(\boldsymbol{b}_l-\boldsymbol{b}_h)\|_2$ after linear transformation

Continuously model the NN distribution under d_A :

probability
$$\boldsymbol{b}_h$$
 is NN to \boldsymbol{b}_l ,
$$p_{lh} = \frac{C_h \exp\{-d_A(\boldsymbol{b}_l, \boldsymbol{b}_h)^2\}}{\sum_{k \neq l} C_k \exp\{-d_A(\boldsymbol{b}_l, \boldsymbol{b}_k)^2\}}$$
 define $p_{ll} = 0$

softmax over distances
..this formulation is based on [2]

model estimates
$$p(y|\boldsymbol{b}_l) = \sum_h p_{lh} \ \hat{q}(y|\boldsymbol{b}_h) \ \forall \ y, \boldsymbol{b}_l$$
 estimates
$$\max_A \sum_l \hat{q}(\boldsymbol{b}_l) \sum_y \hat{q}(y|\boldsymbol{b}_l) \log p(y|\boldsymbol{b}_l)$$

This minimises the expected, under \hat{q}_{X} , KL divergence from $p_{Y|X}$ to $\hat{q}_{Y|X}$. We can view $p(y|\boldsymbol{b}_{l})$ as a kernel estimate for $\hat{q}(y|\boldsymbol{b}_{l})$, with d_{A} in a Gaussian kernel.

- **Top-left:** Example of a solution matrix A as a heatmap. There is effective dimensionality reduction from 4d to 2d.
- Bottom-left: ROC curves show the improvement of d_A over Euclidean distance for a 1NN binary classifier.
- **Right:** Projected points in the 2d solution space. Colour denotes $\hat{q}(Y=1|\boldsymbol{x})$, and size denotes $\hat{q}(\boldsymbol{x})$.

References

- [1] Simul8 software. url: https://www.simul8.com.
- [2] Jacob Goldberger et al. "Neighbour-hood Components Analysis". In: *Advances in Neural Information Processing Systems* 17 (2004).