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Simulation Analytics

Stochastic simulation generates a dynamic sample path - a time-stamped
trace of every event and state change.

Opportunity: We can store and analyze the sample path from every
replication, and use this data to answer deeper questions, such as:

@ Which events and components really drive the system's performance?

@ How sensitive is the stochastic performance to the random input
behavior?

@ Why does one system design perform better than another?
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Predicting dynamic performance

Aim: Predict a system’s dynamic performance based on components of
the system state

Difficulty: Simulation is a com-
plex dynamic process which is 1
hard to model with a parametric
function.
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Idea: kNN on the system state
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A waferfab model: Due-date prediction

PRODUCT 1
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Waferfab model, taken from Kayton, Teyner, Schwartz and Uzsoy.

Aim: Predict whether a cassette will finish on time or late.

Problem: System state is large and heterogeneous. What are
neighbors? When are two states similar?
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What is similar? - Metric Learning

System state x = [xy, x2,...,Xq] | contains d real-valued state variables.
We can learn a Mahalanobis distance metric of the form

d(xi, x7) = [(xi — x;) T M(x; — x;)]'/2,

by optimizing some criteria over our data points:
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The learned matrix M
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A stochastic activity network
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Applying kNN and metric learning on sample path data allows:
@ Real-time predictions of a dynamic performance measure.

@ Interpretation as to which components of the system state drive the
dynamic performance.

Future direction:

@ Tailoring the metric learning to the simulation context

Laidler, Morgan, Nelson, Pavlidis Metric Learning for Simulation Analytics WSC 2020



	Motivation
	Methodology
	Example

