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Abstract

Currently available models for spatial extremes suffer either from inflexibility in the dependence structures
that they can capture, lack of scalability to high dimensions, or in most cases, both of these. We present
an approach to spatial extreme value theory based on the conditional multivariate extreme value model,
whereby the limit theory is formed through conditioning upon the value at a particular site being extreme.
The ensuing methodology allows for a flexible class of dependence structures, as well as models that can be
fitted in high dimensions. To overcome issues of conditioning on a single site, we suggest a joint inference
scheme based on all observation locations, and implement an importance sampling algorithm to provide
spatial realizations and estimates of quantities conditioning upon the process being extreme at any of one
of an arbitrary set of locations. The modelling approach is applied to Australian summer temperature
extremes, permitting assessment the spatial extent of high temperature events over the continent.

Keywords: conditional extremes; extremal dependence; importance sampling; Pareto process; spatial mod-
elling

1 Introduction

1.1 Background

Conditional extreme value theory (Heffernan and Tawn, 2004; Heffernan and Resnick, 2007) focuses on the
behaviour of a random vector X, given that a component of that random vector, say Xj , is large. In contrast
to classical multivariate extreme value theory, resulting limit distributions can offer non-trivial descriptions of
vectors exhibiting asymptotic dependence or asymptotic independence (see Section 1.3 for definitions), whereas
the classical framework provides neat characterizations for the asymptotic dependence case only.

Classical extreme value theory has been extended from the multivariate case (de Haan and Resnick, 1977) to
the spatial case, resulting in max-stable processes for maxima (de Haan, 1984; Smith, 1990; Schlather, 2002), or
more recently, Pareto processes (Ferreira and de Haan, 2014; Dombry and Ribatet, 2015) for suitable definitions
of functional threshold-exceedances. In each case, the resulting theory is only applicable as a statistical model
when asymptotic dependence is present in the process, and when sufficient convergence towards the limit has
occurred. A seemingly more common situation in environmental data is asymptotic independence, whereby the
dependence in the process becomes progressively weaker as the level of the event becomes more extreme. This
is manifested by extreme events becoming more spatially localized at higher levels, and is a feature exhibited
by all Gaussian processes that are not perfectly dependent.

In contrast to the asymptotic dependence case, little work has been done on developing asymptotically
justifiable models for asymptotically independent extremes. Partly, this is because one has to reconsider the
meaning of “asymptotically justifiable” when the limits from classical extreme value theory are trivial. Based on
a subasymptotic argument, Wadsworth and Tawn (2012) suggested a class of models that might be broadly ap-
plicable to asymptotically independent extremes, whilst the Gaussian process forms another possibility (Bortot
et al., 2000). The modelling approach that we propose in this paper is able to capture a variety of asymptotically
independent and dependent structures, whilst also being motivated by limiting arguments.

Sometimes it is unclear whether data display asymptotic dependence or asymptotic independence, but
models often only cover one dependence type. Huser et al. (2017) and Huser and Wadsworth (2018) present
spatial models that can capture both possibilities, although the same dependence class must hold over the
entire spatial domain of interest, and independence between sites at long range may not be possible. In some
situations, it is plausible that asymptotic dependence may hold between sites that are reasonably close, but
asymptotic independence prevails at longer distances. The class of models that we describe can capture this
phenomenon.

Several of the models available in the literature on spatial extremes are challenging to fit in high dimensions,
with 20–30 sites being a common upper limit. For a certain class of Pareto processes, de Fondeville and Davison
(2018) used gradient score methods to avoid computing costly components of the likelihood, and combined this
with coding efficiencies to permit inference on several hundred sites. However, general application of spatial
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extreme value modelling to large numbers of sites has yet to occur. The methods that we propose can be fitted
to hundreds of sites.

The flexibility in the range of dependence structures that we can capture is achieved by conditioning on
the process being extreme at an arbitrary reference location s0. In practice, whilst this conditioning might suit
certain applications, more generally it is desirable to condition on the process being extreme anywhere over the
domain of interest, S ⊂ R2. We will also demonstrate inference on quantities of interest conditioning upon the
maximum of the process at any collection of locations being large. This is achieved via an importance sampling
algorithm, which also leads to an approximate method to simulate directly from the distribution of the field
conditionally upon the maximum being large, through the empirical distribution of the sampled processes and
their importance weights.

1.2 Main assumption

Conditional extreme value theory requires standardization to exponential-tailed margins, achieved in practice
via the probability integral transformation. Let {X(s) : s ∈ S ⊂ R2} be a stationary stochastic process with
continuous sample paths and margins satisfying P(X(sj) > x) ∼ e−x, x → ∞. Where we wish to account for
negative dependence, it is also assumed that P(X(sj) < x) ∼ e−|x|, as x → −∞. For such cases, Keef et al.
(2013) proposed modelling with Laplace margins. We assume that one can find functions {as−s0 : R→ R, s ∈ S},
with a0(x) = x and {bs−s0 : R→ (0,∞), s ∈ S}, such that for any s0 ∈ S, any d ∈ N and any collection of sites
s1, . . . , sd ∈ S,({

X(si)− asi−s0(X(s0))

bsi−s0(X(s0))

}
i=1,...,d

, X(s0)− t

)∣∣X(s0) > t
d→ ({Z0(si)}i=1,...,d, E), t→∞; (1)

that is, convergence in distribution of the normalized process to {Z0(s) : s ∈ S} in the sense of finite-dimensional
distributions. In the limit, the variable E ∼ Exp(1) is independent of the residual process {Z0(s)}, which
satisfies Z0(s0) = 0 almost surely, but is non-degenerate for all s 6= s0 and places no mass at +∞. Note that in
assumption (1) it is irrelevant whether the conditioning site s0 represents one of the sites {s1, . . . , sd}. When
assumption (1) is employed for modelling (see Sections 3 and 4) one indeed needs to condition on observed
values. However, when simulating new events for example (see Section 5), the conditioning site could be any
site in the domain.

An equivalent limiting formulation under the existence of a joint density for the process X is obtained by
conditioning upon the precise value of X(s0). To see this, observe that L’Hôpital’s rule provides

lim
t→∞

P

({
X(si)−asi−s0

(X(s0))

bsi−s0
(X(s0))

}
i=1,...,d

≤ z, X(s0) > t

)
P(X(s0) > t)

= lim
t→∞

∂
∂tP

({
X(si)−asi−s0

(X(sj))

bsi−s0
(X(s0))

}
i=1,...,d

≤ z, X(s0) > t

)
∂
∂tP(X(s0) > t)

= lim
t→∞

P

({
X(si)− asi−s0(t)

bsi−s0(t)

}
i=1,...,d

≤ z
∣∣∣X(s0) = t

)
.

The independence of the conditioning variable is also assured under this alternative formulation of the assump-
tion, see e.g. Wadsworth et al. (2017, Proposition 5). Since all the processes that we will consider have densities,
this alternative version may sometimes be useful (see Section 2).

The functions as−s0 , bs−s0 appearing in limit (1) can be characterized to some degree. Heffernan and Resnick
(2007) detail various requirements in a bivariate setting under the assumption that the conditioning variable has
a regularly varying tail, but with no marginal assumptions on the other variable. If the conditioning variable
has an exponential tail, these requirements translate to the existence of functions ψ1

s−s0 , ψ
2
s−s0 such that for all

c ∈ R

ψ1
s−s0(c) = lim

t→∞
bs−s0(t+ c)/bs−s0(t) ψ2

s−s0(c) = lim
t→∞
{as−s0(t+ c)− as−s0(t)}/bs−s0(t), (2)

with local uniform convergence on compact subsets of R; see also Papastathopoulos and Tawn (2016). Con-
ditions (2) do not provide detailed information since the non-conditioning variable can have any marginal
distribution, but any function as−s0 or bs−s0 in (1), and later in Section 3, should satisfy these. Some modest
additional structure is given in Proposition 3 of Appendix A under assumptions on the support of the limit dis-
tribution. Generally the literature on conditional extremes is split according to whether the non-conditioning
variable(s) are assumed to have a standard marginal form, such as the exponential tails in assumption (1).
Standardization occurs in most applied literature (e.g. Keef et al., 2013) with the prescription for the assumed
normalization following from a variety of theoretical examples, in conjunction with checks on the modelling as-
sumptions. We follow this general approach with the identical exponential-tailed margins in assumption (1). In
more probabilistic literature (e.g. Das and Resnick, 2011; Drees and Janßen, 2017) standardization is typically
not assumed, or involves heavy tails rather than exponential tails, such as in Heffernan and Resnick (2007).
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1.3 Definitions and notation

Notions of asymptotic dependence and asymptotic independence are simply defined in the bivariate case, whilst
the multivariate or spatial case requires more care. A bivariate random vector (Y1, Y2), with Yj ∼ Fj , is termed
asymptotically dependent if the limit χ = limq→1 P(F1(Y1) > q, F2(Y2) > q)/(1−q) exists and is positive; χ = 0
defines asymptotic independence. In the spatial case, for Y (sj) ∼ Fsj we define

χ(s1, s2) = lim
q→1

P(Fs1(Y (s1)) > q, Fs2(Y (s2)) > q)/(1− q). (3)

We specialize to the case of stationary processes Y , for which χ(s1, s2) ≡ χ(h), h = s1−s2. A process is termed
asymptotically dependent if χ(h) > 0 for all lags h = (h1, h2)>, and asymptotically independent if χ(h) = 0 for
all ‖h‖ > 0, with ‖ · ‖ the Euclidean distance. If χ(h) > 0 for ‖h‖ < ∆θ, and χ(h) = 0 for ‖h‖ ≥ ∆θ, with
θ = arccosh1/‖h‖ the direction of h, we call the process directionally lag-asymptotically dependent, or simply
lag-asymptotically dependent if the process is isotropic, so that ∆θ ≡ ∆.

Notationally, all vectors of length greater than one are expressed in boldface, with the exception of those
denoting spatial location, e.g. sj = (sj,1, sj,2)>, including spatial lags h = s1 − s2. By convention, arithmetic
operations on vectors are applied componentwise, with scalar values recycled as necessary. For example, if
f : R→ R, x ∈ Rd, c ∈ R, then f(x+ c) = (f(x1 + c), . . . , f(xd + c))>.

2 Examples

We present examples of widely used spatial processes that satisfy limit (1), and use these to identify useful
structures for model building. Table 1 summarizes the examples of Section 2.1–2.5.

Table 1: Normalization functions and limit processes for theoretical examples given in Sections 2.1–2.5. For the
process of Huser and Wadsworth (2018), V in (13) is taken as a marginally transformed Gaussian process. In
the final row, `s−s0(x) is a slowly-varying function of x, with limx→∞ `s−s0(x) = 0, whose form is given by (10).

Process as−s0(x) bs−s0(x) Z0(s)

Gaussian ρ(s− s0)2x 1 + as−s0(x)1/2 Gaussian
tν x 1 tν+1 (transformed margins)
Brown–Resnick x 1 Gaussian
Huser and Wadsworth (2018) (λ < 1) ρ(s− s0)2x 1 + as−s0(x)1/2 Gaussian
Inverted Brown–Resnick `s−s0(x)x as−s0(x)/(log x)1/2 Independence (reverse Gumbel margins)

2.1 Gaussian process

Let {Y (s) : s ∈ S ⊂ R2} be a standard stationary Gaussian processes with correlation function ρ(h) ≥ 0 and
let X(s) = − log(1−Φ(Y (s))) be the same process transformed to standard exponential margins. Then, taking
as−s0(x) = ρ(s− s0)2x and bs−s0(x) = x1/2, the limit process Z0(s) is Gaussian with zero mean and covariance
structure defined by the matrix

Σ0 = (2ρk,0ρl,0(ρk,l − ρk,0ρl,0))1≤k,l≤d,

with ρk,0 = ρ(sk − s0) etc. This limit representation looks problematic as the process Z0 becomes degenerate
as ρ(sk − s0)→ 0, owing to the fact that the scale normalization, X(s0)1/2, is still present when ρ(sk − s0) = 0
even though X(sk) and X(s0) are then independent. To avoid this, we can instead consider{

X(si)− ρ(si − s0)2X(s0)

ρ(si − s0)X(s0)1/2 + 1

}
i=1,...,d

,

for which the limit process Z0(s) is Gaussian with zero mean and covariance structure

Σ0 = 2(ρk,l − ρk,0ρl,0)1≤k,l≤d.

Consequently, Z0(s) has the conditional distribution of a Gaussian process with correlation function ρ, con-
ditional upon the event Z0(s0) = 0. However, when ρ(sk − s0) = 0, the limit process Z0 does not have
Gaussian margins, but identical margins to X. As such, there is still a discontinuity in the limit behaviour once
independence is reached.
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2.2 Brown–Resnick process

Let {X(s) : s ∈ S ⊂ R2} be a Brown–Resnick process (Kabluchko et al., 2009) with Gumbel margins. That is,
X can be expressed as

X(s) =

∞∨
i=1

Ei +Wi(s)− σ2(s)/2 (4)

where Ei are points of a Poisson process on R with intensity e−xdx, and Wi are independent and identically
distributed copies of a centred Gaussian process with stationary increments, and σ2(s) = E{W (s)2}. The
variogram of the process W is given by

γ(s1, s2) = E[{W (s1)−W (s2)}2], (5)

and if W (0) = 0 almost surely (a.s.), then σ2(s) = γ(s, 0). Note that the representation (4) is not unique, and
e.g., Dieker and Mikosch (2015) provide alternative representations with the same distribution.

Engelke et al. (2015) show that, for such a process, the finite-dimensional distributions of extremal increments
{X(s)−X(s0)|X(s0) > t} converges as t→∞ to a multivariate Gaussian distribution with mean vector

m0 = (−γ(si, s0)/2)i=1,...,d (6)

and covariance matrix

Ω0 = (γ(si, s0)/2 + γ(sk, s0)/2− γ(si, sk)/2)1≤i,k≤d. (7)

As such, the diagonal elements of the covariance matrix are (γ(si, s0))i=1,...,d, i.e., m0 = −diag(Ω0)/2. This
is the same limiting formulation as (1), with as−s0(x) = x, bs−s0(x) = 1, and Z0 a Gaussian process whose
moment structure is determined by (6) and (7).

2.3 t process

The t process, with ν > 0 degrees of freedom, arises as a particular Gaussian scale mixture. Specifically, taking

Y (s) = RW (s), (8)

with W a standard Gaussian process with correlation function ρ(h), and R−2 ∼ Gamma(ν/2, ν/2), the finite-
dimensional distributions Y = (Y (s1), . . . , Y (sd)) have density

fdν (y;µ,Σ) = Cdν [1 + (y − µ)>Σ−1(y − µ)/ν]−(ν+d)/2,

with normalization constant

Cdν =
Γ((ν + d)/2)

Γ(ν/2)|Σ|1/2(νπ)d/2
;

we write Y ∼ Stdν(µ,Σ). Calculations for the bivariate tν distribution were given in Keef (2006); here we extend
these to arbitrary dimension. Suppose Y ∼ Stdν(0,Σ), with dispersion matrix Σ = (ρk,l) a correlation matrix,
and let Y−j represent Y without component j. Then

Y−j − ρjYj
(ν + Y 2

j )1/2
(ν + 1)1/2 ∼ Std−1ν+1(0, (ρk,l − ρj,kρj,l)k,l 6=j), (9)

with ρj ∈ (−1, 1)d−1 the jth column of Σ, without the jth component. Let T : R→ R be a monotonic increasing
transformation and consider X = T (Y ), such that P(X(sj) > x) ∼ e−x, with X = T (Y ) the transformed
finite-dimensional random vector. A suitable choice of transformation T satisfies T−1(x) ∼ K1/νex/ν , where
K = C1

νν
(ν−1)/2. We then have

P(X−j − t ≤ z|Xj = t) = P(T (Y−j) ≤ z + t|T (Yj) = t)

= P

(
Y−j − ρjT−1(t)

(ν + T−1(t)2)1/2
≤ T−1(z + t)− ρjT−1(t)

(ν + T−1(t)2)1/2

∣∣∣Yj = T−1(t)

)
,

which, by (9) is the cdf of the Std−1ν+1(0, (ρk,l − ρj,kρj,l)k,l 6=j/(ν + 1)) distribution. Using the asymptotic form of
T−1(x), we have that the argument of this distribution function,

T−1(z + t)− ρjT−1(t)

(ν + T−1(t)2)1/2
→ ez/ν − ρj , t→∞.
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Consequently, X −Xj |Xj > t
d→ Zj , where Zjj = 0 and

P(Zj−j ≤ z) = F d−1ν+1 (ez/ν ;ρj , (ρk,l − ρj,kρj,l)k,l 6=j/(ν + 1)),

where F d−1ν+1 (·,µ,Σ) is the cdf of Std−1ν+1(µ,Σ). As such, we conclude for the spatial process that as−s0(x) = x,
bs−s0(x) = 1. Note that this distribution has mass on lines through −∞, which arise due to the fact that in
representation (8), large values of R cause both large and small values of Y , depending upon the sign of W .

The process Z0(s), defined through its finite-dimensional distributions Z0 = {Z0(s1), . . . , Z0(sd)}, is thus a
transformed version of the tν+1 process with Z0(s0) = 0 a.s., with positive probability of being equal to −∞ at
any other site. That probability is smaller the stronger the dependence with the conditioning site; i.e., locally
around the conditioning site, there is a high probability of Z0 > −∞.

2.4 Inverted Brown–Resnick process

Wadsworth and Tawn (2012) introduced the class of inverted max-stable processes as those processes whose
upper joint tail has the same dependence structure as the lower joint tail of a max-stable process. That is, if Y
is a max-stable process and T represents a monotonically-decreasing marginal transformation, then T (Y ) is an
inverted max-stable process. Applying the transformation T (x) = e−x to (4) yields the inverted Brown–Resnick
process, with standard exponential margins.

Papastathopoulos and Tawn (2016) consider conditional limits of the bivariate margins of the inverted
Brown–Resnick process. They show that the normalizations required to obtain a non-degenerate limit are

asi−s0(x) = x exp

{
γ(si, s0)/4− (γ(si, s0)/2)1/2(2 log x)1/2 + (γ(si, s0)/2)1/2

log log x

(2 log x)1/2

}
(10)

bsi−s0(x) = asi−s0(x)/(log x)1/2, (11)

with limiting marginal distribution for Z0(si) given by

P(Z0(si) ≤ z) = 1− exp{−(γ(si, s0)/2)1/2 exp{2z/γ(si, s0)1/2)}/(8π)1/2}. (12)

The multiplier of x in equation (10) is a slowly varying function `s−s0(x), meaning for c > 0, limx→∞ `s−s0(cx)/`s−s0(x) =
1. In the case of (10), limx→∞ `s−s0(x) = 0, i.e., as−s0(x) = o(x), x → ∞. For the inverted Brown–Resnick
process, the normalization and limiting distribution appear rather unintuitive when considering how γ affects
the dependence. Indeed, as γ(si, s0) → ∞, the max-stable process, and thus the inverted max-stable process,
approaches independence. Yet, for finite x, the normalization asi−s0(x) becomes large, and the mass of the
limiting distribution of Z0(si) is placed at smaller values. Note that replacing z by {γ(si − s0)/2}1/2z − γ(si −
s0)1/2 log{γ(si−s0)/2}/4 removes dependence of the limit distribution on γ; this is equivalent to modifying the
normalization functions to

ãsi−s0(x) = asi−s0(x)− bsi−s0(x)γ(si, s0)1/2 log{γ(si, s0)/2}/4
b̃si−s0(x) = {γ(si − s0)/2}1/2bsi−s0(x).

However, whilst stabilizing the limit in γ, this still does not lead to an easily interpretable normalization in
the sense of a and/or b decreasing monotonically with γ. To understand this, it is helpful to consider how
such a process is formed. From equation (4), with σ2(s) = γ(s), the Brown–Resnick process is the pointwise
maximum of location-adjusted Gaussian processes with negative drift. The more negative the drift (i.e., the
larger γ) the more likely it is that the pointwise maxima from two locations will stem from different underlying
Gaussian processes, which is why independence is achieved in the limit as γ → ∞. Now, large values of
the inverted Brown–Resnick process correspond to small values of the uninverted process, which are likely to
be at the intersection points whereby different Gaussian processes contribute to the suprema. This rather
complex construction thus leads to the seemingly unintuitive behaviour. Concerning the limiting process Zj ,
Papastathopoulos and Tawn (2016) state that this corresponds to pointwise independence, and as such all
structure lies in the functions as−s0 , bs−s0 , and reverse Gumbel type margins (12).

2.5 Process of Huser and Wadsworth (2018)

Huser and Wadsworth (2018) present a model for spatial extremes obtained by scale mixtures on Pareto margins,
or location mixtures on exponential margins. Suppose that V (s) is an asymptotically independent process with
unit exponential margins, and Q is an independent unit exponential variate. Then

X∗(s) = δQ+ (1− δ)V (s) (13)
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exhibits asymptotic independence for δ ≤ 1/2 and asymptotic dependence for δ > 1/2. Here, for simplicity of
presentation, we reparameterize to X∗∗(s) = X∗(s)/(1 − δ), and set λ = δ/(1 − δ) ∈ (0,∞), with λ ∈ (0, 1]
corresponding to asymptotic independence. The marginal distribution of X∗∗ is

P(X∗∗(sj) > x) =
1

1− λ
e−x − λ

1− λ
e−x/λ,

so that the leading order term is e−x/(1−λ) for λ < 1 and λe−x/λ/(λ− 1) for λ > 1; the case λ = 1 is obtained
as (1 + x)e−x upon taking the limit. Therefore, for λ < 1, the transformation X(s) = X∗∗(s) + log(1 − λ)
satisfies P(X(sj) > x) ∼ e−x, x→∞.

The following proposition establishes the behaviour of interest in this case; in particular we find that the con-
ditional limit distribution of the modified process X(s) requires the same normalization and has the same limit
distribution as the process V (s), if the scale normalization required for V is increasing in V (s0). For notational
purposes in the following we set V0 = V (s0), X0 = X(s0), V = (V (s1), . . . , V (sd)), X = (X(s1), . . . , X(sd)),
a(x) = (as1−s0(x), . . . , asd−s0(x)), and b(x) = (bs1−s0(x), . . . , bsd−s0(x)).

Proposition 1. Suppose that V has identical exponential-tailed margins, P(Vl > v) ∼ e−v, v → ∞, and for
a(v) and b(v) with twice-differentiable components al, bl satisfying a′l(v) ∼ αl, a′′l (v) = o(1), b′l(v)/bl(v) = o(1),
as v →∞, l = 1, . . . , d,

P

(
V − a(V0)

b(V0)
≤ z

∣∣∣ V0 = v

)
→ G(z), v →∞.

Suppose further that all first and second order partial derivatives with respect to components of z converge, as
specified in Lemma 1 of Appendix A. Then for X = V + λQ+ log(1− λ), with Q ∼Exp(1) independent of V ,
and λ ∈ (0, 1),

P

(
X − a(X0)

b(X0)
≤ z

∣∣∣ X0 = x

)
→

{
G(z), min1≤l≤d bl(x)→∞∫ q?
0
G
(
z + (α−1)(λq+log(1−λ))

limx→∞ b(x)

)
)(1− λ)e−(1−λ)q dq, otherwise

as x → ∞, with α = (α1, . . . , αd)
>, and q? = limx→∞([− log(1− λ)− v∗ + min{minl(al(x) + bl(x)zl), x}]/λ)+

for v∗ the lower endpoint of the support of V .

Corollary 1. The normalization and limit distribution for X are the same as those for V when either:

(i) All bs−s0(x)→∞, x→∞, for all s, s0.

(ii) as−s0(x) ∼ x and bs−s0(x) ∼ 1, x→∞, for all s, s0, as arises under asymptotic dependence for V .

The proof of Proposition 1 is in Appendix A. For the application of Proposition 1, convergence of the
partial derivatives needs to be established. Supposing concretely that V is a Gaussian process with margins
transformed to be exponential, Lemma 2 and Remark 1 of Appendix A provides this result.

For λ > 1, asymptotic dependence arises, and with a rescaling, one can express X(s) = Q+V (s)/λ+log(1−
1/λ) such that P(X(s) > x) ∼ e−x. In this case, as−s0(x) = x, bs−s0(x) = 1 and the limiting dependence
structure is determined by the distribution of V .

3 Statistical modelling

Motivated by the limit assumption (1) and the examples in Section 2, we suppose that for a high threshold u,

{X(s)|X(s0) > u : s ∈ S}
d
≈
{
as−s0(X(s0)) + bs−s0(X(sj))Z

0(s) : s ∈ S
}
, (14)

for some choice of functions as−s0 , bs−s0 , residual process Z0, and that X(s0) − u|X(s0) > u ∼ Exp(1) is
independent of Z0. This specifies a process model conditioning on a particular site being extreme. With d
points at which the process is observed, for inference we are interested in d such specifications, taking each
observation site as the conditioning site s0. Inference is described in Section 4, whilst simulation conditioning
both on {X(s0) > u} and {maxi1≤i≤im X(si) > u}, for any collection of sites {si1 , . . . , sim} with each sij ∈ S,
is dealt with in Section 5. For now, we address the specification of as−s0 , bs−s0 and Z0.
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3.1 Functions as−s0 and bs−s0

As noted in Section 1, the function as−s0 : R → R must satisfy a0(x) = x. Further, if the process X is
asymptotically dependent, then as−s0(x) = x for all s, whilst if it is (directionally) lag-asymptotically dependent
up to lag ∆θ, then as−s0(x) = x for ‖s− s0‖ ≤ ∆θ. Under asymptotic independence, and if Z0 has any positive
support, we have as−s0(x) < x, where the bound may only hold asymptotically, i.e., as x→∞ (Proposition 3,
Appendix A). Focusing on the isotropic case, we propose the general parametric form for as−s0 as

as−s0(x) = xα(s− s0) =

{
x ‖s− s0‖ < ∆

x exp{−[(‖s− s0‖ −∆)/λ]κ}, ‖s− s0‖ ≥ ∆.
(15)

Taking ∆ = 0 provides a flexible model for asymptotic independence, with parameters (λ, κ) to estimate. Taking
∆ > 0 but less than the maximum distance between any two sites in the domain would allow for lag-asymptotic
dependence; the value of ∆ itself could be estimated directly, although profiling over ∆ on a grid may be
preferable. Taking ∆ larger than the maximum distance between any two sites would correspond to asymptotic
dependence, in which case (λ, κ) would not be estimated. Equation (15) covers all forms for as−s0 from lines 1–4
of Table 1, if ρ is an exponential correlation function, and line 5 up to a slowly varying function. Furthermore,
condition (2) is satisfied as long as bs−s0(x) 6→ 0 as x → ∞. We note that other monotonically decreasing
functions are also candidates for the second line of (15); certain correlation functions and survival functions are
natural choices.

For the function bs−s0 , we propose three forms to achieve different modelling aims. Each of the proposed
sets of functions as−s0 , bs−s0 satisfies conditions (2).

Model 1 Let as−s0 be given by (15), and

bs−s0(x) = [1 + ζxβ ]−1.

The rationale behind this suggestion is that, if β < 0 and ζ > 0, then bs−s0(x) ↗ 1, with ζ and β controlling
the convergence to the constant value. When as−s0(x) = x and data are (lag-)asymptotically dependent, this
permits the model to display some subasymptotic dependence, in the sense that for ‖sk − s0‖ < ∆,

χu(sk − s0) = P(X(sk) > u|X(s0) > u) = P(X(s0) + [1 + ζX(s0)β ]−1Z0(sk) > u|X(s0) > u)

= eu
∫ ∞
u

P(Z0(sk) > (u− v)/[1 + ζvβ ]−1)e−v dv

=

∫ ∞
0

P(Z0(sk) > −q/[1 + ζ(q + u)β ]−1)e−q dq

↘
∫ ∞
0

P(Z0(sk) > −q)e−q dq, u→∞.

In practice, spatial data nearly always exhibit values of χu(sk − s0) that decrease with the level u, although
Pareto process models for asymptotic dependence (Ferreira and de Haan, 2014) cannot capture this feature,
leading to overestimation of dependence at extreme levels. Taking bs−s0 as a constant function here with
as−s0(x) = x would also yield asymptotic dependence with χu not varying with u. Such a model could be
implemented by choice if the estimate of β � 0, for example.

Model 2 Let as−s0 be given by (15) with ∆ = 0, and

bs−s0(x) = xβ .

This represents a modelling strategy close to that proposed by Heffernan and Tawn (2004). If the marginal
support of Z0 includes (0,∞), we require β < 1 (Proposition 3, Appendix A), whilst conditions (2) imply β ≥ 0.
We have

χu(sk − s0) =

∫ ∞
0

P[Z0(sk) > {u− α(sk − s0)(q + u)}/(q + u)β ]e−q dq ↘ 0, u→∞,

so that the rate of convergence to zero is controlled by β, in conjunction with the value of α(sk − s0) and
the distribution of Z0(sk). Such a model may perform well on data that exhibit asymptotic independence,
but positive dependence over the whole region of study. In particular, since bs−s0(x) is still growing even as
as−s0(x)→ 0 (‖s− s0‖ → ∞), independence cannot be achieved as ‖s− s0‖ → ∞. This observation motivates
our final model.
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Model 3 Let as−s0 be given by (15) with ∆ = 0, and

bs−s0(x) = 1 + as−s0(x)β .

With Model 3, if as−s0(x)→ 0 as ‖s− s0‖ → ∞, with β > 0, then bs−s0(x)→ 1 as ‖s− s0‖ → ∞. Thus, for s
sufficiently far from s0, we would have

X(s)|X(s0) > u
d
≈ Z0(s).

This final observation indicates that, under Model 3, for s far from s0, the margins of the process Z0 should be
the same as the process X.

3.2 Process Z0(s)

The process Z0 must satisfy Z0(s0) = 0. Supposing initially that we begin with an arbitrary Gaussian process
ZG, there are two natural ways to derive a process from ZG with this property:

(i) Set Z0(s) to have the distribution of ZG(s)|ZG(s0) = 0

(ii) Set Z0(s) to have the distribution of ZG(s)− ZG(s0),

with the resulting processes both again Gaussian. The initial process ZG might be stationary, and specified by
a correlation function ρ and variance σ2, or have stationary increments, specified by a variogram γ, as in (5);
addition of the drift term −γ(s, s0)/2 to the latter yields the process specified by (6) and (7).

Taking such a Gaussian process may be a natural and parsimonious choice in many situations. Indeed,
allowing non-Gaussian dependence in Z0 would lead to intractable models for high-dimensions, although we
emphasize that the dependence of the modelled process X is not Gaussian. However, the choice of marginal
distribution for Z0 can impact upon the model; in particular, as noted at the end of Section 3.1, we may wish
Z0 to have the same margins as X in certain places, e.g., when ‖s− s0‖ is large.

We thus propose the following distributional family, that includes both Gaussian and Laplace marginal
distributions. We say that a random variable Z has a delta-Laplace distribution, with location parameter µ ∈ R
and scale parameter σ > 0, if its density is

f(z) =
δ

2σΓ(1/δ)
exp

{
−
∣∣∣∣x− µσ

∣∣∣∣δ
}
, δ > 0, (16)

with Γ(·) the standard gamma function. When δ = 1 this is the Laplace distribution. If X has Laplace margins,
as suggested in Keef et al. (2013), Model 3 can be completed by allowing the parameter δ to depend on s− s0,
such that δ(s−s0)→ 1 as ‖s−s0‖ → ∞. When δ = 2, density (16) is that of the Gaussian distribution with mean
µ and variance σ2/2. In general, if Z has distribution (16), then E(Z) = µ and Var(Z) = {Γ(3/δ)/Γ(1/δ)}σ2.

In practice, the location and scale structure implied by the processes (i) and (ii) defined on Gaussian margins
are passed through to the delta-Laplace margins via the probability integral transform. In some situations it
may be desirable to incorporate alternative mean structures by specifying a particular parametric form for
µ(s− s0) that is different from those implied by (i) and (ii); further discussion on this is made in Section 6.

4 Inference

4.1 Likelihood

The models described in Section 3 are suitable given an extreme in a single location. However, we would like
to combine these models to allow for extremes in any observed location. Assuming stationarity, this motivates
the use of a composite likelihood to estimate parameters of as−s0 , bs−s0 and Z0, all of which do not depend on
the conditioning site s0, now taken to be one of the observation locations. Specifically, denote these parameters
by θ = (θa,θb,θZ), where some subsets of parameters may be scalar, and let

Lj(θ) =

nj∏
i=1

fZj ({[xik − ask−sj (xij ;θa)]/bsk−sj (xij ;θb)}k∈{1,...,d}\j ;θZ)
∏

k∈{1,...,d}\j

bsk−sj (xij ;θb)
−1

be the likelihood based on the nj points where X(sj) > u, with fZj the density of Z0 at the observation
locations excluding sj when s0 = sj . We estimate θ from the composite likelihood over all d observed sites

L(θ) =
∏d
j=1 Lj(θ). The likelihood is composite, since any realizations of X that are larger than u at multiple

sites will be counted more than once in the likelihood, with different conditioning sites. An alternative approach
may be to condition on {X(sj) > u,X(sj) = maxk(X(sk))}, but this leads to different limit processes Zj in
general, so we do not adopt this strategy here. Assessment of parameter uncertainty can be undertaken by use
of bootstrap techniques; see Section 6.
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4.2 Computation time

An advantage of the conditional approach over other models is that the likelihood does not require integrals as
in the censored likelihoods commonly used for asymptotically dependent or asymptotically independent models
(e.g., Wadsworth and Tawn, 2014; Thibaud and Opitz, 2015; Huser et al., 2017; Huser and Wadsworth, 2018).
Such integrals are typically the limiting factor in the number of sites to which one can fit the model, often
meaning a reasonable upper limit is 20–30 sites.

Figure 1 displays example computation times for the evaluation of a single likelihood Lj , and the full
composite likelihood for different dimensions d and different numbers of average repetitions nj , both for Model
3. The boxplots are created from 50 repetitions on different data, and the figure is intended as a rough
guide to how many dimensions one might reasonably attempt to optimize a likelihood in, based on our R
code implementation, which makes use of the mvnfast R library (Fasiolo, 2016). Computation times for the
composite likelihood generally slightly exceed d times the computation for the likelihood conditioning at a
single site. Based on these findings, it is perfectly feasible to optimize a 100–200 dimensional likelihood, with a
moderate number of repetitions, with no special computing power. Higher-dimensional optimization is certainly
possible with modest additional computing power or more computationally efficient code.
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Figure 1: Left: computation time for a likelihood conditioning on a single site exceeding the threshold, for
different numbers of sites, d, and average numbers of exceedances at the conditioning site, n. Right: computation
time for a composite likelihood over all sites.

5 Simulation

Inference on quantities of interest, such as the probabilities of different extreme events, can be made via simula-
tion. Given the nature of the model and assumptions, simulation conditional on being extreme at a particular
location s0 is straightforward, and the algorithm is outlined in Section 5.1. In many circumstances, it is desirable
to condition instead on the process being extreme at some part of the domain, but not at a specific location.
We address methods for this in Section 5.2.

5.1 Simulation given an extreme at a specified site

Under assumption (1) and model (14), simulation of X(s), given an extreme value above a threshold v ≥ u at
a specific location s0, proceeds as follows:

Algorithm 1.

1. Generate X(s0)|X(s0) > v ∼ Exp(1)

2. Independently of X(s0), generate {Z0(s) : s ∈ S} from the model as specified in Section 3.2.

3. Set {X(s)|X(s0) > v : s ∈ S} = {as−s0(X(s0)) + bs−s0(X(s0))Z0(s) : s ∈ S}.

In practice, Algorithm 1 is used to simulate at a finite m-dimensional collection of sites {si1 , . . . , sim}, where
the observation sites {s1, . . . , sd} may or may not be included. We denote the m-dimensional distribution of
X(s)|X(s0) > v, obtained via the approximation (14), by Qv0. Further, denote by M = {i1, . . . , im} the set of
indices corresponding to the simulation sites, and by D = {1, . . . , d} the indices of the observation locations,
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where we may have M = D. Letting XM = {X(si1), . . . , X(sim)}, Algorithm 1 can be used to estimate
quantities of the form

E{g(XM )|X(s0) > v} = EQv
0
{g(XM )}, (17)

for some g : Rm → Rl, l ≥ 1. Equation (17) is convenient if one is either interested in conditioning on a
specific location, or if g(·) is an indicator function for an event that involves X(s0) > v′ ≥ v, since then the
unconditional probability of this event is easily estimated using the exponential distribution of X(s0). As an
illustration, suppose that the simulation sites are the observation sites, let 1(A) be the indicator function for
the occurrence of event A, and g(X) = 1(X(s1) > v, . . . ,X(sd) > v). Then, taking s0 as any sj , j = 1, . . . , d
we have

P(X(s1) > v, . . . ,X(sd) > v) = EQv
0
{1(X(s1) > v, . . . ,X(sd) > v)} × e−v.

5.2 Simulation given an extreme in the domain

In place of conditioning on a single site being extreme, one may often be interested in estimating quantities of
the form

E{g(XM )|max
i∈M ′

X(si) > v}, (18)

where M ′ is a set of indices that could be a subset of, equal to, or completely disjoint from, M . The case
most likely to be of interest is M ′ = M , so that if m = |M | is large and the locations suitably arranged,
{maxi∈M ′ X(si) > v} ≈ {supS X(s) > v}. In what follows, we focus on M ′ = M , and initially consider the
simulation threshold v = u.

We denote the distribution of X|maxi∈M X(si) > u by Pu, abbreviate X(si) = Xi, i ∈ M or i ∈ D, and
let Qu :=

∑
i∈M πiQ

u
i , where Qui represents Qu0 at s0 = si and

πi =
P(Xi > u)∑
i∈M P(Xi > u)

,

which equals 1/m if the margins are identical. In other words Qu is the mixture distribution formed by selecting
each Qui with probability πi. The support of Qu is {x ∈ Rm : maxi∈M xi > u}. We note that because we assume
stationarity of X, with continuous margins on R+, all margins are equal and some of the following algorithms
can be simplified. However, we give the more general formulation below.

5.2.1 Rejection sampling

Keef et al. (2013) propose a method to simulate from the distribution of XD|maxi∈DX(si) > u, i.e., where
M = D = {1, . . . , d} and the simulation sites are the set of observation locations. Note the partition

{x ∈ Rd : max
i∈D

xi > u} = ∪dj=1{x ∈ Rd : xj > u, xj = max
i∈D

xi},

and that Pu =
∑
j∈D π̃

u
jQ

u
j,max, where Quj,max is the distribution of X|Xj > u,Xj = maxi∈DXi, and π̃uj =

P(Xj = maxi∈DXi|maxi∈DXi > u). Their algorithm is as follows:

Algorithm 2.

1. Estimate π̃uj using empirical proportions

2. To simulate from Quj,max, draw from Quj and reject unless Xj = maxi∈DXi

3. Simulate from Pu by drawing from Quj,max with probability π̃uj

This rejection method leads directly to draws from (an estimate of) Pu, but has substantial drawbacks:

(i) One can only condition on being large at the observation locations, rather than any set of locations;

(ii) For high dimensions, the number of rejections to get a single draw from Quj,max may be very high;

(iii) If one wishes to simulate from P v, v � u, one needs to firstly simulate from Pu and use the resulting
draws to estimate the probabilities π̃vj , before proceeding with the rejection sampling approach to simulate
Qvj,max;

(iv) If the maximum never occurs at a particular site in the sample, it will not occur there in simulations either.

The final point can be addressed by simulating from the model to estimate π̃uj , at the cost of adding
complexity to the algorithm. We propose an approach to estimate quantities of the form (18) via importance
sampling, that avoids all of these drawbacks.
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5.2.2 Importance sampling

Compared to Pu, the distribution Qu samples more frequently in regions where multiple variables are extreme.
However, this frequency is tractable: in the region where exactly k variables are larger than u, Qu samples k
times more observations than Pu, because there are k distributions Quj covering this area.

To formalize this connection, let P be a probability measure on B(Rm), the Borel sigma algebra of Rm, for
which P (Xi > u) > 0 for all i ∈ M . Letting Rmax = {x ∈ Rm : maxi∈M xi > u}, and E,EPu ,EQu

j
denote

expectation with respect to P, Pu and Qu respectively, we can express

EPu{g(XM )} =
E{g(XM )1(XM ∈ Rmax)}

E{1(XM ∈ Rmax)}
, EQu

i
{g(XM )} =

E{g(XM )1(Xi > u)}
E{1(Xi > u)}

, (19)

and EQu{g(X)} =
∑
i∈M πiEQu

i
{g(X)}. Further note that Rmax = ∪KRK , where

RK = {x ∈ Rm : xk > u, for all k ∈ K, and xl ≤ u for all l ∈M \K}, K ⊆M,

and the union is over all K in the power set of M , minus the empty set, with all RK disjoint.

Proposition 2. For any random vector XM ∈ Rm, for which P (Xi > u) > 0 for all i ∈M , and any function
g : Rm → Rl

EPu{g(XM )} =

∑
i∈M P(Xi > u)

P(maxi∈M Xi > u)

∑
K

EQu{g(XM )1(XM ∈ RK)/|K|} =

∑
K EQu{g(XM )1(XM ∈ RK)/|K|}∑

K EQu{1(XM ∈ RK)/|K|}
.

Proof. We have

EPu{g(XM )} =
E{g(XM )1(XM ∈ Rmax)}

E{1(XM ∈ Rmax)}
=

∑
K E{g(XM )1(XM ∈ RK)}
P (maxi∈M Xi > u)

, (20)

whilst for any j ∈ K we also have

E{g(XM )1(XM ∈ RK)} =
E{g(XM )1(XM ∈ RK)1(Xj > u)}

E{1(Xj > u)}
E{1(Xj > u)}.

Averaging over each j ∈ K we get

E{g(XM )1(XM ∈ RK)} =
1

|K|
∑
j∈K

E{g(XM )1(XM ∈ RK)1(Xj > u)}
E{1(Xj > u)}

E{1(Xj > u)}

=
1

|K|
∑
j∈M

E{g(XM )1(XM ∈ RK)1(Xj > u)}
E{1(Xj > u)}

πj
∑
i∈M

P(Xi > u), (21)

the second line following since for j ∈M \K, E{g(XM )1(XM ∈ RK)1(Xj > u)} = 0, and using the definition
of πj . Putting (20) and (21) together

EPu{g(XM )} =

∑
i∈M P(Xi > u)

P (maxi∈M Xi > u)

∑
K

1

|K|
∑
j∈M

πj
E{g(XM )1(XM ∈ RK)1(Xj > u)}

E{1(Xj > u)}

=

∑
i∈M P(Xi > u)

P (maxi∈M Xi > u)

∑
K

EQu{g(XM )1(XM ∈ RK)/|K|},

which gives the first equality. For the second equality, note that

1 = EPu{1(XM ∈ Rmax)} =

∑
i∈M P(Xi > u)

P (maxi∈M Xi > u)

∑
K

EQu{1(XM ∈ Rmax)1(XM ∈ RK)/|K|},

and dividing through by this gives the result.

We note that there is nothing specific to our general assumptions or extreme-value theory in this proposition:
it holds for any random vector and any u for which P (Xj > u) for all j, whether u is extreme or not. For
our purposes, u is a high marginal threshold and the distribution Qu is obtained through asymptotic theory
via Quj , which can be simulated from as outlined in Section 5.1. Since we have continuous margins on R+,
P(Xj > v) > 0 for all j and all v ≥ u, so the result can be applied at higher thresholds.

Thanks to Proposition 2, we have the following algorithm to estimate E{g(XM )|maxi∈M Xi > v} =
EPv{g(XM )}:
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Algorithm 3.

1. With probability πj = 1/m, draw XM from Qvj , j ∈M

2. Repeat step 1 n times to get n draws X1
M , . . . ,X

n
M from Qv

3. Estimate the expectation EPv{g(XM )} by∑n
i=1 g(Xi

M )/|{j : Xi
j > v}|∑n

i=1 1/|{j : Xi
j > v}|

, Xi
M ∼ Qv. (22)

We note that the natural estimate of EPv{g(XM )} from equation (19) would look like∑
K

∑n
i=1 g(Xi

M )1(Xi
M ∈ RK)/|K|∑

K

∑n
i=1 1(Xi

M ∈ RK)/|K|
, Xi ∼ Qv,

but since it is only the size of K that matters we do not need to sum over all K but simply divide by the number
of variables exceeding the threshold. Furthermore, if it is desired to have realizations from the distribution
conditioning upon the maximum being large, i.e., of XM |maxi∈M Xi > u, this can be achieved approximately
by using the importance weights in expression (22). That is, we sub-sample n′ realizations from the collection
{Xi}ni=1 with probabilities proportional to {1/|{j : Xi

j > v}|}ni=1.

5.3 Conditional infill simulation of an existing event

Given the observation of a process X(s) at a collection of sites {s1, . . . , sd}, we may wish to simulate X,
conditionally upon the values of the observed process when extreme for at least one site, at an alternative
collection of sites {si1 , . . . , sil}, where we let L = {k1, . . . , kl} with L ∩D = ∅. One could also condition on the
sites in D′ ⊂ D take L = D \D′, if there are missing data, for example, or for checking model fit. In contrast to
purely Gaussian models, conditional simulation is more challenging from models tailored to spatial extremes,
although it is possible for models based on elliptical processes such as those described in Huser et al. (2017).
An algorithm was proposed for max-stable processes by Dombry et al. (2013).

Consider a realization Xi(s), with Xi(sj) > u for all j ∈ Ji ⊆ D, and Xi(sj) < u for all j 6∈ Ji. For each
j ∈ Ji, we have

Zji (s) =
Xi(s)− as−sj (Xi(sj))

bs−sj (Xi(sj))
,

which, following the discussion in Section 3.2, is modelled as a (marginally-transformed) Gaussian process.
Simulation of {Zj(si1), . . . , Zj(sil)}|{Zj(s1), . . . , Zj(sd)} can thus be achieved exploiting conditional simulation
from a Gaussian process. Simplifying notation slightly, let (ZL,ZD) represent an (l + d)-dimensional random
vector from the multivariate Gaussian with mean µ and covariance matrix Σ, and transformed to have delta-
Laplace margins with mean vector µδ and scale parameter vector σδ. Partition µ = (µL,µD), with µL ∈ Rl,
µD ∈ Rd, and similarly for other vectors, whilst ΣLD ∈ Rl×d etc., represent the partitioned Σ. Let Fδ,Φ, fδ and
φ represent the univariate distribution functions and densities, respectively, of the delta-Laplace and Gaussian
distributions, where Fδ(zL;µδL,σ

δ
L) = (Fδ(zL,k1 ;µδL,k1 , σ

δ
L,k1

), . . . , Fδ(zL,kl ;µ
δ
L,kl

, σδL,kl))
> etc., and denote by

φl(·;m,Ω) the l-dimensional multivariate Gaussian density with mean m and covariance Ω.
The conditional density of (ZL|ZD = zD), denoted fZL|ZD

, can be expressed

fZL|ZD
(zL|zD) = φl

[
Φ−1

{
Fδ(zL;µδL,σ

δ
L);µL,σL

}
;µL|D,ΣL|D

] ∏
k∈L

fδ(zL,k;µδk, σ
δ
k)

φ(Φ−1(Fδ(zL,k;µδL,k, σ
δ
L,k);µL,k, σL,k);µL,k, σL,k)

,

(23)

with

µL|D = µL − ΣLDΣ−1D,D(µD − Φ−1
{
Fδ(zD;µδD,σ

δ
D);µD,σD

}
)

ΣL|D = ΣLL − ΣLDΣ−1D,DΣDL.

To simulate from density (23):

Algorithm 4.

1. Given zD, µ,Σ,µδ,σδ, calculate µL|D and ΣL|D

2. Simulate YL from the l−dimensional Gaussian with mean µL|D and covariance ΣL|D
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Figure 2: Example of conditional simulation. A realization of X (black solid line) is displayed at 10 sites but
the information from three sites (depicted by circles) is treated as missing. The red lines depict conditional
simulations based on the other seven values, and being extreme at one of the sites above the modelling threshold.
The model is the fitted model from Section 6, fitted to all observations.

3. Apply the transformation ZL = F−1δ {Φ(YL;µL,σL);µδL,σ
δ
L}.

Note the final step of Algorithm 4 is not a typical application of the probability integral transform, since
the margins of YL do not have location and scale parameters µL,σL, but rather µL|D,σL|D where the latter is

the square root of the diagonal of ΣL|D. When δ = 2 and σδ = σ{Γ(1/2)/Γ(3/2)}1/2 = 21/2σ, then this is just
standard conditional simulation from the Gaussian.

Once draws from {Zj(sk1), . . . , Zj(skl)}|{Zj(s1), . . . , Zj(sd)} have been made, then the processX(s)|Xi(sj) >
u is recovered by setting

X(sk)|Xi(sj) > u = ask−sj (Xi(sj)) + bsk−sj (Xi(sj))Z
j(sk), k ∈ L,

and this can be done for each j ∈ Ji. That is, we are conditioning both on the values at observed sites, and on
the process being extreme at a specific site sj ∈ Ji.

The conditional simulation using Algorithm 4 is illustrated in Figure 2, using a subset of the Australian
temperature data analyzed in Section 6. For these data, which are gridded and complete, conditional simulation
may serve to help understand the fit of the model, but for other datasets it could be useful to deal with missing
observations or to simulate at unobserved sites. The intended use of the conditional simulation may dictate
whether one of these sites is more interesting or whether inference should be combined across all sites in Ji.

6 Australian temperature extremes

6.1 Data

We analyze temperature data in Australia from the HadGHCND global gridded dataset (Caesar et al., 2006).
These are observed data translated onto a relatively coarse 2.5◦× 3.75◦ grid, with 72 points covering Australia;
see the top-left panel of Figure 3 for an illustration. A complete record of daily maximum temperatures
is available from 1/1/1957 - 31/12/2014, and we focus on the summer temperatures recorded in December,
January and February. This yields a total of 5234 days of observations at the 72 locations. The same data,
recorded until the end of 2011, were analyzed in Winter et al. (2016) using non-spatial models, where the focus
lay on investigating the effects of the El Niño Southern Oscillation (ENSO).

We transform the marginal distributions to unit Laplace, using the empirical distribution function. The
choice of the double exponential-tailed Laplace distribution is motivated by the fact that we may anticipate
independence at long range, and by allowing the margins of Z0 to follow distribution (16), this feature can
be captured. An alternative to empirical transformation is to use a semi-parametric marginal transformation,
modelling the upper tail with a univariate generalized Pareto distribution. In high-dimensional datasets this
becomes more laborious as one needs to select a threshold and check the model at each site; failing to do so
can lead to poor marginal fits that may impact upon dependence structure estimation. On the other hand,
the semi-parametric transformation is more useful for back-transforming simulations to the original scale in the
extremes.
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6.2 Exploratory analysis

Exploratory analysis indicates anisotropy and some spatial non-stationarity. This latter issue has received
relatively little attention in an extreme value context, although Huser and Genton (2016) consider non-stationary
max-stable processes. In more classical spatial modelling, one approach to dealing with non-stationarity is to
deform the coordinate system, as suggested by Sampson and Guttorp (1992). The essential idea of this technique
is to transform from one coordinate system (the “G-plane”) in which non-stationarity is detected, to another
configuration (the “D-plane”), where stationarity might be more reasonably assumed. We choose here to adopt
such an approach, using the methodology of Smith (1996). Denote by τ : R2 → R2 the mapping from the
G-plane to D-plane. The technique of Smith (1996) is designed for estimation on all data and is driven by the
covariance matrix: the task is to find a deformation function τ such that Cov{Y (τ(s1, s2)), Y (τ(s1, s2))} only
depends on s1, s2 through s1 − s2. However, if patterns of non-stationarity are similar in the extremes to the
body then this procedure should improve estimation in the extremes nonetheless. Assuming d locations in the
G-plane, Smith (1996) parameterizes

τ(s1, s2) =

(
κ2s1 + ψκλs2 +

d∑
i=1

ω1,iξi(s1, s2), ψκλs1 + λ2s2 +

d∑
i=1

ω2,iξi(s1, s2)

)
, κ, λ > 0, ψ ∈ R, (24)

with ξi(s1, s2) = 1
2{(s1 − s1,i)

2 + (s2 − s2,i)2} log{(s1 − s1,i)2 + (s2 − s2,i)2}, and ωr,i, r = 1, 2, weights that

satisfy
∑d
i=1 ωr,i =

∑d
i=1 ωr,is1,i =

∑d
i=1 ωr,is2,i = 0. In practice, following Smith (1996), we set most ωr,i to

zero, and focus on using a smaller number of geographically dispersed anchor sites to estimate the deformation.
Figure 3 displays the G-plane and D-plane, highlighting the sites used in the estimation. Also displayed are
estimates of the pairwise coefficient of tail dependence, η, (Ledford and Tawn, 1996) against distance in each
coordinate system. The value of η ∈ (0, 1] is higher for stronger dependence; when two sites are asymptotically
dependent η = 1, and when two sites are independent, η = 1/2. The more stationary the data, the less
variability one expects to observe in η for a given spatial lag ‖h‖: some improvement certainly arises using the
D-plane over the G-plane. A number of factors account for this: reduced anisotropy, accounting for differences
in distance between 1◦ of latitude and longitude, as well as non-stationarity itself. Slightly different D-planes
would be estimated using different anchor sites, and there is no clear way to optimize this aspect given the
combinatorial possibilities. We proceed using the D-plane coordinates displayed in Figure 3. We also include
geometric anisotropy in the models, to pick up any residual effects of anisotropy not accounted for already; see
Appendix B for details.

6.3 Fitted model and investigation of El Niño effect

After further exploration, Model 3 from Section 3, with Z0 defined by a Gaussian process ZG|ZG(s0) = 0, for
which ZG is stationary with powered exponential correlation, marginally transformed to delta-Laplace scale,
was deemed to fit the data best. The threshold for observations being taken as extreme at a given site was set
at the 97.5% quantile of the Laplace distribution, which yields an average of 130 exceedances per site. The fit of
the model indicates asymptotic independence of the data and independence at long range, which is supported
by the estimates of η in Figure 3, as well as estimates from a pairwise fit of the model, displayed in Figure 7
of Appendix B. Note that in the bottom-left panel of Figure 3, we observe that η ≈ 1/2 after a distance
of approximately 4 in the D-plane, which is about the same distance at which α(s − s0) ≈ 0 in Figure 7,
indicating that this is the approximate range for independence between two sites. Figure 7 also supports
parameterizing δ to decrease from 2 to 1 as distance increases, and so we set δ(s − s0) = 1 + exp{−(‖s −
s0‖/δ1)δ2}. Parameter estimates are displayed in Table 2; Table 3 in Appendix B recalls the definition of
each parameter for convenience. Estimates of β were constrained to be less than one, but are very close. The
uncertainty in the parameter estimates is visualized in Figure 8 of Appendix B. To produce this figure, we
used a stationary bootstrap procedure (Politis and Romano, 1994), resampling entire fields with block lengths
following a geometric distribution with mean length ten. The maximum composite likelihood estimates from
the full dataset have then been subtracted to create a common scale. The angle for the anisotropy was restricted
to be between (−π/2, 0] for identifiability.

The assumed model implies that the collection of residual processes {Zj(s)}72j=1 have a distribution defined
by

1. Dependence: ZG(s)|ZG(sj) = 0, where ZG is a stationary Gaussian process with mean µ, and covariance
function σ2 exp{−(‖h‖/φ)ν};

2. Margins: delta-Laplace distribution with shape δ(s− s0), and location and scale parameter to match that
of the conditional field ZG(s)|ZG(sj) = 0.

One test of model fit therefore is to examine how closely the residual processes obtained by

Zj(s) = {X(s)− α̂(s− sj)X(sj)}/[1 + {α̂(s− sj)X(sj)}β̂ ]
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Figure 3: Top: G-plane and D-plane, with anchor sites for which δr,i 6= 0 in (24) highlighted. Bottom: estimates
of the coefficient of tail dependence, η, plotted against distance in the coordinate system.

follow this structure. Upon examination the empirical Zj , we find a lack of fit, which translates into inadequate
reproduction of extreme events. This emanates from an incorrect mean structure. For the possibilities outlined
in Section 3.2, the mean of ZG(s)|ZG(sj) = 0 is either increasing or decreasing from zero, or identically zero, as
‖s−sj‖ increases. However, in practice here the mean increases then decreases again towards zero; see Figure 7.
This is indicative of the long-range independence in this dataset, since if X(sk) is independent of X(sj), with
α(sk − sj) ≈ 0, then Zj(sk) = X(sk), which has delta-Laplace margins with δ = 1, σ = 1, µ = 0. Possibilities
for dealing with this include attempting to parameterize the non-monotonic form, or changing the marginal
parameterization of X to have a different mean, which would in turn affect the mean of Zj at long range, and
which would not impact the motivation for the model. A further possibility in the current context of gridded
data, is to extract the fitted Zj and re-fit the model for these residual processes using the empirical means
(1/nj)

∑nj

i=1 Z
j
i (sk), k ∈ {1, . . . , 72} \ j. A disadvantage of this approach is that it would not allow simulation

at a new location without placing further spatial structure on the means. Where this is not an issue, as here, an
advantage is that it can help alleviate symptoms of non-stationarity, and we thus adopt this approach. Table 2
also displays the parameter estimates for Zj where the Gaussian process model with delta-Laplace margins has
been re-fitted, using the empirical means.

As a further check on the modelling assumptions, we investigate the independence of X(s0)|X(s0) > u
and Z0(s). Figure 5 in Appendix B displays X(sj)|X(sj) > u plotted against the mean and variance of
the corresponding Zj(s) for all conditioning sites sj , whilst Figure 6 displays a summary of the Kendall’s τ
coefficients. Based on these diagnostics, whilst not a perfect assumption, independence of X(s0)|X(s0) > u and
Z0(s) seems a reasonable working hypothesis.

Using the parameter estimates from the re-fitted Zj , and the original estimates for parameters not relating
to Zj , we employ the importance sampling techniques of Section 5.2.2 to estimate the expected number of
grid locations exceeding a certain quantile, given that at least one location exceeds that quantile. Figure 4
displays results for quantiles ranging from 97.5% - 99.9999%, with empirical values where available; the in-
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Table 2: Parameter estimates to two decimal places. ‘Angle’ and ‘Stretch’ refer to geometric anisotropy; see
Appendix B for details.

κ λ β φ ν σ µ δ1 δ2 Angle Stretch

All 1.81 1.63 1.00 2.47 1.88 0.88 −0.09 1.30 1.71 −0.81 0.94
Z only – – – 2.55 1.86 0.96 – 1.72 2.23 −0.75 0.95

El Niño 1.78 1.59 1.00 2.59 1.86 0.88 −0.06 1.12 1.51 −0.96 0.96
Z only – – – 2.66 1.84 0.97 – 1.62 2.08 −0.77 0.96

La Niña 1.79 1.62 1.00 2.52 1.86 0.87 −0.04 1.25 1.66 −0.94 0.94
Z only – – – 2.62 1.83 0.97 – 1.77 2.32 −0.97 0.95

La Nada 1.82 1.65 1.00 2.47 1.87 0.87 −0.11 1.35 1.76 −0.75 0.94
Z only – – – 2.57 1.85 0.96 – 1.76 2.26 −0.70 0.94
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Figure 4: Expected number of exceedances of a particular marginal quantile given that there is at least one
exceedance of that quantile somewhere over Australia. Points marked× are this quantity estimated directly from
the data, with bars giving approximate 95% confidence intervals; there are no data to estimate directly above
the 99.95% quantile. Left: thick solid line represents model-based estimation, with estimates from bootstrap
samples in grey. Right: different colours denote estimates from the models fitted to all data, as well as that
stratified by ENSO covariate.

sample agreement appears good, although there is some question about whether the expected number decreases
rapidly enough. Such a summary could not easily be calculated using the pairwise methods in Winter et al.
(2016). To do so, one would have to fit 72 × 71 = 5112 pairwise models, calculate the Zj by concatenating
empirical residuals, and then using these with the 10,224 estimated parameters to implement the rejection
scheme described in Section 5.2.1. Furthermore, the use of empirical residuals only restricts the shape of new
events: where sites are effectively independent from the conditioning site, i.e., as−s0(x) ≈ 0, simulated new
events will look just like past events in these areas.

To investigate the possible effect of ENSO on the spatial extent of high temperature events, separate models
were fitted to data from El Niño, La Niña and “La Nada” seasons. El Niño (respectively La Niña) events
are defined here as those for which the sea surface temperature (SST) anomaly from 1980-2010 mean levels is
higher than +1◦ (respectively lower than −1◦); La Nada events are the remaining ones. The anomalies were
taken from https://www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/Data/nino34.long.anom.data. The
covariate was defined by averaging monthly SST anomalies over the summer, so that each summer season is
either El Niño, La Niña or La Nada. Marginal transformations were made separately for the three categories,
whilst dependence parameter estimates are given in Table 2. There is some modest deviation from the combined
parameter estimates particularly for the El Niño years where δ decays more rapidly, indicating slightly increased
variability in these years. Figure 4 displays estimates of the expected number of exceedances from the models
fit to the different ENSO regimes: La Niña years are slightly higher and El Niño slightly lower, but differences
do not appear significant. However, differences in marginal quantiles make the practical interpretation less
straightforward. In the South-East of Australia particularly, the high quantiles represent hotter temperatures
under El Niño than La Niña, and a temperature that represents an exceedance of a marginal 99.5% quantile in
La Niña conditions — which from Figure 4 occur in around 3.5 grid squares on average — might be closer to a
97.5% marginal quantile, or even lower, in El Niño conditions, which Figure 4 suggests might affect 5 or more
grid squares on average.
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7 Discussion

The conditional approach to spatial extreme value analysis offers a number of advantages: flexible, asymptotically-
motivated dependence structures that can capture asymptotic (in)dependence; the models can be fit in reason-
ably high dimensions; and conditional simulation at unobserved locations is simple. The principal drawback of
the approach lies in the more complicated interpretation of what constitutes “the model” for a given dataset.
When conditioning only on a single site being extreme, interpretation is straightforward. When wishing to
condition on any of a set of sites being extreme, we need to combine these individual models in a way that
entails no clearly defined overall model for the process given that it is extreme somewhere over space. However,
for the purpose of inference on many quantities of interest, the importance sampling techniques ensure that
this is not an issue.

Owing to computational limitations, there have been relatively few attempts at high-dimensional inference
for extremes. In general, higher-dimensional problems do not only present computational issues, but they are
often accompanied by additional modelling challenges. The spatial domain of interest is likely to be larger,
leading to potentially more diverse behaviour in the dependence. In the Australian temperature example,
we observed non-stationarity, and independence at longer range. These issues are less likely to arise when
focusing on smaller areas, and these complexities should be kept in mind as spatial extremes moves in to a
higher-dimensional phase.

A natural next step is to extend this approach in to a multivariate or space-time setting. For example,
convergence (1) can be generalized by replacing all locations s ∈ S by (s, t) ∈ S × T ⊂ R2 ×R, with the condi-
tioning location (s0, t0). For modelling purposes, there are additional considerations of the dependence regime
in both space and time, and how these interact. However, in principle one can have asymptotic (in)dependence
in both space and time, with potentially different behaviour in the different dimensions. A simple approach,
assuming separability of space and time, would be to take as−s0,t−t0(x) = α1(s− s0)α2(t− t0), with α1, α2 as
in (15) with different parameter values.

Acknowledgements

We thank Simon Brown at the UK Met Office for the data analyzed in Section 6. J. Wadsworth gratefully
acknowledges funding from EPSRC grant EP/P002838/1.

Data and code
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can be obtained from https://www.metoffice.gov.uk/hadobs/hadghcnd/, subject to the conditions detailed
at the URL.

A Additional results and proofs

Before the proof of Proposition 1, Lemma 1 specifies conditions under which there is some flexibility in the
normalization leading to convergence.

Lemma 1. Suppose that for a(v) and b(v) with twice-differentiable components al, bl satisfying a′l(v) ∼ αl,
a′′l (v) = o(1), b′l(v)/bl(v) = o(1), as v →∞, for l = 1, . . . , d,

P

(
V − a(V0)

b(V0)
≤ z

∣∣∣ V0 = v

)
= P

(
V − a(v)

b(v)
≤ z

∣∣∣ V0 = v

)
→ G(z), v →∞,

and that all first and second order partial derivatives converge, i.e.

∂

∂zk
P

(
V − a(v)

b(v)
≤ z

∣∣∣ V0 = v

)
→ ∂

∂zk
G(z),

∂2

∂zk∂zl
P

(
V − a(v)

b(v)
≤ z

∣∣∣ V0 = v

)
→ ∂2

∂zk∂zl
G(z), v →∞.

Then

(i) for h1(v) = (h11(v), . . . , h1d(v))>, h2(v) = (h21(v), . . . , h2d(v))>, with h1l (v) = o(1), h2l (v) = o(1), for all
l = 1, . . . , d,

P

(
V − a(v)

b(v)[1 + h1(v)]
+ h2(v) ≤ z

∣∣∣ V0 = v

)
→ G(z), v →∞.
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(ii) for h1 as above but h2l (v) = O(1), i.e., some components may be asymptotically non-zero constants, whilst
some may converge to zero,

P

(
V − a(v)

b(v)[1 + h1(v)]
+ h2(v) ≤ z

∣∣∣ V0 = v

)
→ G(z − lim

v→∞
h2(v)), v →∞.

Proof. (i) Write

P

(
V − a(v)

b(v)
≤ z

∣∣∣ V0 = v

)
= FV |V0

(b(v)z + a(v)|v),

P

(
V − a(v)

b(v)[1 + h1(v)]
+ h2(v) ≤ z

∣∣∣ V0 = v

)
= FV |V0

(b(v)z + a(v) + b(v)h1(v)z − b(v)h2(v) +O(b(v)h1(v)h2(v))|v).

Now write g(v) = b(v)h1(v)z + b(v)h2(v) + O(b(v)h1(v)h2(v)), with gl(v) = o(bl(v)), and consider the
Taylor expansion

FV |V0
(b(v)z + a(v) + g(v)|v) = FV |V0

(b(v)z + a(v)|v) +∇FV |V0
(b(v)z + a(v)|v)>g(v) +O(max(∨lhl1(v),∨lhl2(v))2).

(25)

The components of∇FV |V0
(b(v)z+a(v)|v)> are F

(l)
V |V0

(b(v)z+a(v)|v), where F
(l)
V |V0

(x|v) = ∂
∂yl
FV |V0

(y|v)|y=x.

The convergence

∂

∂zl
P

(
V − a(V0)

b(V0)
≤ z

∣∣∣ V0 = v

)
→ ∂

∂zl
G(z)

is equivalent to

F
(l)
V |V0

(b(v)z + a(v)|v)bl(v)→ ∂

∂zl
G(z),

hence

F
(l)
V |V0

(b(v)z + a(v)|v) =
∂

∂zl
G(z){bl(v)}−1[1 + o(1)], (26)

with a similar approach for the mixed partial derivatives. Substituting (26) into (25) yields that the second
term in the expansion isO(max(∨lh1l (v),∨lh2l (v))), whilst the next order term isO(max(∨lh1l (v),∨lh2l (v))2).

(ii) The proof is very similar to part (i), except the Taylor expansion is about b(v)(z− limv→∞ h
2(v)) +a(v).

Proof of Proposition 1. For brevity, write c = − log(1−λ) and let q?x = ([c−v∗+min{minl(al(x)+bl(x)zl), x}]/λ)+
with y+ = max(y, 0). We have

lim
x→∞

P

(
X − a(X0)

b(X0)
≤ z

∣∣∣ X0 = x

)
= lim
x→∞

∫ q?x

0

P

(
X − a(X0)

b(X0)
≤ z, Q = q

∣∣∣ X0 = x

)
dq

= lim
x→∞

∫ q?x

0

P

(
X − a(x)

b(x)
≤ z

∣∣∣ Q = q,X0 = x

)
fQ|X0

(q|x) dq

= lim
x→∞

∫ q?x

0

P

(
V + λq − c− a(v(x) + λq − c)

b(v(x) + λq − c)
≤ z

∣∣∣ V0 = v(x), Q = q

)
× fQ|X0

(q|x) dq

= lim
x→∞

∫ q?x

0

P

(
V − a(v(x)) + (1−α)(λq − c) + o(1)

b(v(x))[1 +O(∇b(v(x))/b(v(x)))]
≤ z

∣∣∣ V0 = v(x), Q = q

)
× fQ|X0

(q|x) dq,

with v(x) = x − λq + c and fQ|X0
(q|x) the conditional density of Q|X0 = x. The integrand is dominated by

fQ|X0
(q|x), and

fQ|X0
(q|x) =

fQ,V0
(q, x− λq + c)

fX0(x)
∼ e−qe−(x−λq+c)1(q > 0)1(x− λq + c > v∗)

e−x
→ (1− λ)e−(1−λ)q1(q > 0), x→∞.

By Lemma 1, as v →∞,

P

(
V − a(v) + (1−α)(λq − c) + o(1)

b(v)[1 +O(∇b(v)/b(v))]
≤ z

∣∣∣ V = v,Q = q

)
→ G

(
z +

(α− 1)(λq + log(1− λ))

limv→∞ b(v)

)
,

which simplifies when limv→∞ bl(v) =∞ for all l. Dominated convergence then yields the result stated.
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Lemma 2 (Convergence of Gaussian partial derivatives). Suppose (Y , Y0)> follows a (d + 1)-dimensional
Gaussian distribution, and let (V , V0)> = T ((Y , Y0)>) ∈ Rd+1

+ be a random vector with unit exponential
margins and Gaussian copula. Denote by ρ0 > 0 the d-vector of correlation parameters between Y and Y0.
Then for a(v) = ρ20v, b(v) = 1 + (ρ0v)1/2 and any r ≤ d,

∂r

∂z1 · · · ∂zr
P

(
V − a(v)

b(v)
≤ z

∣∣∣ V0 = v

)
→ ∂r

∂z1 · · · ∂zr
G(z).

Proof. We can express

P

(
V − a(v)

b(v)
≤ z

∣∣∣ V0 = v

)
= P

[
Y ≤ T−1{b(T (y))z + a(T (y))}

∣∣∣ T (Y0) = T (y)
]

= Φd
[
T−1{b(T (y))z + a(T (y))} − ρ0y; Σ0

]
where Φd(·; Σ0) is the cdf of the centred d-variate Gaussian with covariance matrix Σ0 = (ρk,l− ρk,0ρl,0)1≤k,l≤d
Taking the derivative yields

∂r

∂z1 · · · ∂zr
P
[
Y ≤ T−1 {b(T (y))z + a(T (y))}

∣∣∣ T (Y0) = T (y)
]

= Φ
(1:r)
d

[
T−1{b(T (y))z + a(T (y))}; Σ0

] r∏
k=1

∂

∂zk
T−1{bk(T (y))zk + ak(T (y))}, (27)

where Φ
(1:r)
d (·|Σ0) is the rth-order mixed partial derivative of Φd. The components

∂

∂zk
T−1{bk(T (y))zk + ak(T (y))} =

bk(T (y))

T ′ [T−1{bk(T (y))zk + ak(T (y))}]
. (28)

Now T (y) = − log{1 − Φ(y)} = y2/2 + O(log y), y → ∞, whilst T−1(x) = (2x)1/2 + O(log x/x1/2), x → ∞,
and T ′(y) = φ(y)/{1 − Φ(y)} ∼ y, y → ∞. Further, bk(T (y)) = 1 + ρ0,ky/

√
2 + O(log y), whilst ak(T (y)) =

ρ20,ky
2/2 +O(log y). Combining these,

T−1{bk(T (y))zk + ak(T (y))} = ρ0,ky + zk/
√

2 + o(1),

and equation (28) converges to 1/
√

2, whilst (27) converges to

Φ
(1:r)
d

(
z/
√

2; Σ|0
)

2−r/2,

which is the rth-order mixed partial derivative of the Gaussian limit distribution.

Remark 1. For application of Proposition 1, we also require convergence of the second derivative ∂2/(∂zk)2.

Iteration of the above manipulations leads to a conclusion that the derivative converges to Φ
(kk)
d (z/

√
2; Σ0)/2,

with Φ
(kk)
d (z) = ∂2Φd(y)/(∂yk)2|y=z.

Proposition 3. Suppose that (X1, X2) have identical margins with infinite upper endpoint and

1. limx→∞ P(X1 > x|X2 > x) = 0

2. limt→∞ P [{X1 − a(X2)}/b(X2) > z|X2 > t] = G(z),

with G a non-degenerate distribution function for which limz→∞G(z) = 1. Then if there exists t0 such that
a(t) > 0 is monotonically non-decreasing in t for all t > t0

(i) If G(z) ∈ (0, 1) for some z ∈ (0,∞), a(t) < t for all sufficiently large t.

(ii) If G(z) ∈ (0, 1) for all z ∈ (0,∞), then b(t) = o(t), t→∞.

Proof. (i). When z > 0,

0 ≤ P (X1 > a(X2) + b(X2)z|X2 > t) ≤ P (X1 > a(X2)|X2 > t) ≤ P (X1 > a(t)|X2 > t) ,

for sufficiently large t. But since P (X1 > t|X2 > t)→ 0, we must have a(t) < t for all large t to get convergence
to G(z) ∈ (0, 1).
(ii). If b(t) is constant or decreasing then clearly the statement holds, so suppose it is increasing as t → ∞.
Similarly to above

0 ≤ P (X1 > a(X2) + b(X2)z|X2 > t) ≤ P (X1 > b(X2)z|X2 > t) ≤ P (X1 > b(t)z|X2 > t)

for z > 0 and large t. Now if b(t) ∼ ct for some c > 0 then for any z > 1/c, and sufficiently large t,
0 < P (X1 > b(t)z|X2 > t) ≤ P (X1 > t|X2 > t) → 0. But since G(z) ∈ (0, 1) for any z ∈ (0,∞), we must have
b(t) = o(t).
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B Supporting information for Section 6

B.1 Model information

Table 3: Description of parameters in fitted model
Parameter Description
κ Shape parameter in α(s− s0) (eq. (15))
λ Scale parameter in α(s− s0) (eq. (15))
β Power in bs−s0 = 1 + as−s0(x)β

φ Scale parameter in Gaussian correlation
ν Shape parameter in Gaussian correlation
σ Scale parameter of ZG used to determine structure of Zj

µ Mean parameter of ZG used to determine structure of Zj

δ1 Scale parameter in δ(s− s0) = 1 + exp{−(‖s− s0‖/δ1)δ2}
δ2 Shape parameter in δ(s− s0) = 1 + exp{−(‖s− s0‖/δ1)δ2}
Angle Angle for geometric anisotropy
Stretch Stretch for geometric anisotropy

For geometric anisotropy, the coordinate system is changed from (s1, s2)> to (s̃1, s̃2)>, via(
s̃1

s̃2

)
=

(
1 0
0 1/Stretch

)(
cos(Angle) − sin(Angle)
cos(Angle) sin(Angle)

)(
s1

s2

)
.

B.2 Diagnostic plots and parameter uncertainty
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Figure 5: Xi(sj)|Xi(sj) > u against the mean (left) and variance (right) of Zji (s), i = 1, . . . , nj . The samples
were transformed empirically to a standard uniform scale for each j = 1, . . . , 72.
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Figure 6: Histograms (red) of Kendall’s τ coefficients for: Xi(sj)|Xi(sj) > u and the mean (left) and variance

(right) of Zji (s), i = 1, . . . , nj for the 72 sites, with average sample size nj ≈ 130. For comparison, in blue is
the histogram of the approximate null Kendall’s τ distribution obtained from 10000 samples of 130 independent
bivariate datapoints to give an impression of the null distribution.
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Figure 7: Parameter estimates from pairwise model fits using the same structure as Model 3, i.e., a(x) = αx,
b(x) = 1 + (αx)β and Z following a delta Laplace distribution. Here β was constrained between (−1, 1). Fits
were made using composite likelihoods where a single set of parameters was assumed to apply for each pair,
whichever the conditioning variable. Distance is in the transformed coordinate space, after accounting for the
additional estimated anisotropy. Solid red lines display implied values from the full fitted model; dashed blue
lines display implied estimates from the model refitted to the extracted residual processes Zj .

21



κ λ β φ µ δ1 δ2 A S ν σ

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

φ δ1 δ2 A S ν σ

−0.2

−0.1

0.0

0.1

0.2

Figure 8: Distribution of estimates from 100 bootstrap repetitions, with population MLE subtracted. Left: full
model fit; right: fit to extracted Zj using empirical means. A= Angle, S = Stretch.
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