Pointcatcher - feature tracking in image sequences

Pointcatcher in use

Pointcatcher is primarily designed to facilitate manual tracking, but also allows provides automation with a correlation-based auto-tracking option. If you are after fully automated feature tracking through large video sequences, Pointcatcher is probably not for you. However, if you are after data extraction from difficult time-lapse imagery, or want interactivity or manual control of tracking, then give it a try. Pointcatcher is written in Matlab and provided here as a compiled executable. Pointcatcher files are saved in a Matlab form, but the tracked coordinates can be exported as text to allow easy plotting or spreadsheet analysis if required. Features:

  • video or time-lapse image files
  • track moving features automatically or manually
  • estimation of camera orientation changes

Downloads

If you use Pointcatcher, please cite this website and some of the previous work listed below. Instructions will be added when I get opportunity...

NOTE: Due to a temporary change in my university's Matlab license, the current executables are valid for only a month. If your download expires (and typically, it just starts to give a runtime error rather than indicating a license expiry), just download again. I will try to maintain current versions, but email if I forget.

    pointcatcher v1.0 (beta):

    Publications using Pointcatcher

    James, M. R. and Robson, S. Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery, ISPRS J. Photogram. Rem. Sens., [submitted]

    Applegarth, L. J., Tuffen, H., James, M. R. and Pinkerton, H. (2013) Degassing-induced crystallization in basalts, Earth-Sci. Rev., 116, 1-16, doi:10.1016/j.earscirev.2012.10.007

    Applegarth, L. J., Tuffen, H., James, M. R., Pinkerton, H. and Cashman, K, (2013) Direct observations of degassing induced crystallization in basalts, Geology, 41(2), 243-246, doi:10.1130/G33641.1

    Delcamp, A., van Wyk de Vries, B. & James, M. R. (2011) Relationships between volcano gravitational spreading and magma intrusion. Bull. Volc., doi:10.1007/s00445-011-0558-9

    Applegarth, L. J., James, M. R., van Wyk de Vries, B. & Pinkerton, H. (2010) The influence of surface clinker on the crustal structures and dynamics of 'a'a lava flows. J. Geophys. Res., 115, B07210, doi:10.1029/2009JB006965

    Delcamp, A., van Wyk de Vries, B. & James, M. R. (2008) The influence of edifice slope and substrata on volcano spreading. J. Volc. Geotherm. Res., 117, 925943, doi:10.1016/j.jvolgeores.2008.07.014

    Robson, S. & James, M. R. (2007) Photogrammetric image sequence processing to determine change in active lava flows. Proc. Remote Sensing and Photogrammetry Society Ann. Conf., 2007 (RSPSoc 2007), 11th - 14th September, Newcastle upon Tyne, U.K., 321-322.

    James, M. R., Pinkerton, H & Robson, S. (2007) Image-based measurement of flux variation in distal regions of active lava flows, Geochem. Geophys. Geosys., 8, Q03005, doi:10.1029/2006GC001448

    Contact details