mch
PURPOSE
Maximum Clusterability Hyperplane
SYNOPSIS
function [idx,sol] = mch(X, varargin)
DESCRIPTION
Maximum Clusterability Hyperplane
[IDX,SOL] = MCH(X, VARARGIN)
[IDX,SOL] = MCH(X) bi-partitions the points in the N-by-D data matrix (X) with
the hyperplane that maximises the Variance Ratio clusterability criterion.
MCH returns a vector IDX containing the binary cluster assignment and a
Maximum Clusterability Hyperplane (mchp) object SOL. (If S initial projection
vectors are specified S maximum clusterability hyperplanes are returned: see 'v0')
SOL = MCH(X, 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameters
in the form of name/value pairs.
OPTIONAL PARAMETERS:
'v0' - D-by-S matrix of S initial projection vectors
(default: Vector connecting centroids of 2-means clustering)
'minsize' - Minimum cluster size (integer)
(default minsize = 1)
'maxit' - Number of BFGS iterations to perform for each value of alpha (default: 50)
'ftol' - Stopping criterion for change in objective function value over consecutive iterations
(default: 1.e-7)
'verb' - Verbosity. Values greater than 0 enable visualisation during execution
(default: 0)
'labels' - true cluster assignment. Enables the computation of performance over
successive iterations and a better visualisation of how clusters are split
'colours' - Matrix containing colour specification for observations in different clusters
Number of rows must be equal to the number of true clusters (if 'labels' has been specified) or equal to 2.CROSS-REFERENCE INFORMATION
This function calls:- ifelse Shorthand for ternary operator: if-then-else
- myparser Function used to parse optional arguments in form of Name,Value pairs for a number of OPC algorithms
- mc_v0 Default projection vector for maximum clusterability projection pursuit
- mcpp Maximum Clusterability Projection Pursuit (MCPP) algorithm
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005