mdpp
PURPOSE
Minimum Density Projection Pursuit (MDPP) algorithm
SYNOPSIS
function [optHP, idx, spindex] = mdpp(Data, pars, labels, colours)
DESCRIPTION
Minimum Density Projection Pursuit (MDPP) algorithm
[OPTHP, IDX, SPINDEX] = MDPP(X, PARS, LABELS, COLOURS)
Inputs:
(X): Data matrix
(PARS): Structure containing all parameters of mddc() algorithm
(LABELS): True clusters; used only for visualisation (optional)
(COLOURS): Colormap matrix used only for visualisation (optional)
Output:
(OPTHP): Minimum density hyperplane (if more than one initial projection vectors
are used then the one that maximises the splitting criterion pars.split_index())
(IDX): Binary cluster assignment {-1,1}
(SPINDEX): Value of splitting index criterionCROSS-REFERENCE INFORMATION
This function calls:- fixLabels Enforces cluster labels to be in the range 1:K
- ifelse Shorthand for ternary operator: if-then-else
- isOctave Determines whether the environment is GNU Octave (returns TRUE) or MATLAB (returns FALSE)
- pcacomp Returns the principal components of (X) specified in vector (index)
- reldepth Relative Depth
- f_df_md Function value and derivative for penalised density
- f_md Penalised density of optimal hyperplane with normal vector (V)
- mdhp MDHP implements Minimum Density Hyperplane (inherits from HP class)
- mddc Minimum Density Divisive Clustering
- mdh Minimum Density Hyperplane
- mdhp MDHP implements Minimum Density Hyperplane (inherits from HP class)
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005