Dr Nicholas Evans

Lecturer

Research Interests

My supramolecular chemistry research interests encompass both host-guest recognition and self-assembly.

Host-Guest Recognition

The study of molecular recognition, as carried out by supramolecular chemists, has to date largely focused on the binding and sensing of relatively "simple" targets such as metal cations or inorganic anions. Ultimately, I am aiming to prepare molecules or assemblies capable of the recognition of more challenging chemical targets, for example, ion pairs and chiral molecules. It is anticipated that the most promising of these receptors could then be incorporated into sensory devices for the guest species which they preferentially bind.

This research combines both synthetic and analytical chemistry skills, and its impact extends beyond the primary aim of molecular recognition with potential benefits to other areas of scientific investigation, including catalysis and pharmaceutical drug development.

Self-Assembly

Catenanes and rotaxanes are examples of interlocked molecules that are typically constructed by use of templated self-assembly processes. I am fascinated by the opportunities arising from the 3D structures of these remarkable molecules to create new receptors for functional applications.

However, to maximize these opportunities, synthetic routes to these interlocked molecules need to be rapid, scalable and allow for the incorporation of functionality to bind their target guests. Work carried out at Lancaster on the rapid synthesis of catenanes and rotaxanes has already been reported, and application of these methodologies to prepare receptors (and other functional molecules) is currently in progress.

For further information, see: http://supramolecularevans.com.

Selected Publications Show all 27 publications

Recent advances in the synthesis and application of hydrogen bond templated rotaxanes and catenanes
Evans, N.H. 10/06/2019
Literature review

Modulating the expression of chirality in a mechanically chiral rotaxane
Gell, C.E., McArdle-Ismaguilov, T.A., Evans, N.H. 7/02/2019 In: Chemical Communications. 55, 11, p. 1576-1579. 4 p.
Journal article

Chiral catenanes and rotaxanes: fundamentals and emerging applications
Evans, N.H. 2/03/2018
Literature review

Rapidly accessible "click" rotaxanes utilizing a single amide hydrogen bond templating motif
Fletcher, B.E., Peach, M.J.G., Evans, N.H. 7/04/2017 In: Organic and Biomolecular Chemistry . 15, 13, p. 2797-2803. 7 p.
Journal article

The rapid synthesis and dynamic behaviour of an isophthalamide [2]catenane
Marrs, C.N., Evans, N.H. 15/09/2015 In: Organic and Biomolecular Chemistry . p. 11021-11025. 5 p.
Journal article

Advances in anion supramolecular chemistry: from recognition to chemical applications
Evans, N.H., Beer, P.D. 27/10/2014
Literature review

Progress in the synthesis and exploitation of catenanes since the Millennium
Evans, N.H., Beer, P.D. 7/07/2014
Literature review

Complete stereocontrol in the synthesis of macrocyclic lanthanide complexes: direct formation of enantiopure systems for circularly polarised luminescence applications
Evans, N.H., Carr, R., Delbianco, M., Pal, R., Yufit, D.S., Parker, D. 28/11/2013 In: Dalton Transactions. 42, 44, p. 15610-15616. 7 p.
Journal article

Solution and surface-confined chloride anion templated redox-active ferrocene catenanes
Evans, N.H., Rahman, H., Leontiev, A.V., Greenham, N.D., Orlowski, G.A., Zeng, Q., Jacobs, R.M.J., Serpell, C.J., Kilah, N.L., Davis, J.J., Beer, P.D. 1/04/2012 In: Chemical Science. 3, 4, p. 1080-1089. 10 p.
Journal article

A redox-active [3]rotaxane capable of binding and electrochemically sensing chloride and sulfate anions
Evans, N.H., Serpell, C.J., Beer, P.D. 21/08/2011 In: Chemical Communications. 47, 31, p. 8775-8777. 3 p.
Journal article

Chloride anion templated synthesis and crystal structure of a handcuff catenane
Evans, N.H., Serpell, C.J., Beer, P.D. 7/03/2011 In: Angewandte Chemie International Edition. 50, 11, p. 2507-2510. 4 p.
Journal article

  • Chemical Synthesis