- Home
- Study
- Undergraduate
- Undergraduate Courses
- Biology BSc Hons (C101)
Biology BSc Hons - 2019 Entry
UCAS Code
C101
Entry Year
2019
A Level Requirements
AAB
see all requirements
see all requirements
Duration
Full time 3 Year(s)
Course Overview
Discover how animals and plants function at an organism level; explore how they interact with their environment; and tackle the global challenges that affect them. Gain hands-on experience with our amazing field trips to Spain, Kenya or Scotland.
Throughout your degree, you will be taught by internationally-renowned academics, and will have access to our state-of-the-art laboratories, which offer excellent facilities for practical work. You may participate in half and full-day excursions that benefit from our local, dynamic surroundings of the Lake District, Yorkshire Dales, Bowland Fells and Morecambe Bay, in addition to residential field work.
Our first year modules form a well-rounded introduction to the fundamental features of biology where you will gain the opportunity to link key global challenges, such as maintaining biodiversity, to human use of the environment and human health.
We offer flexible study paths that can be tailored to your own interests. In particular, in your second and final year of study, you can choose from a host of optional modules to develop your knowledge in specific aspects of biology, whilst gaining advanced techniques such as experimental design, data analysis and research delivery.
Our international field trips provide exciting opportunities. You may explore the Doñana National Park in the southwest of Spain, which is home to a plethora of plant, bird and animal species, including the world’s most endangered cat, the Iberian lynx; you can visit some of the UK’s last remaining natural habitats in rural Scotland, and witness a range of animals including red deer, osprey, mountain hare, hen harrier and golden eagle; or contribute to an expert-led study of the Rift Valley of Kenya, where we will evaluate the challenging balance between tropical conversation and human activity.
Your final year will feature a dissertation project where you may choose to make use of our high-quality laboratories and cutting-edge instrumentation, or undertake field-based work, such as contributing to ongoing research projects in the UK or overseas. Alternatively, you can choose to complete your dissertation with a work placement, benefitting from our strong links with industry.
During your degree, you may be able to move to our MSci Biology which includes all the content available on this degree as well as a fourth year offering a variety of Masters level modules and enabling you to undertake an extended research project. There is also a Study Abroad BSc Hons Biology where you spend Year 2 at one of our partner universities in North America or Australasia.
Entry Requirements
Grade Requirements
A Level AAB
Required Subjects A level grade AB in two sciences from the following; Biology, Chemistry, Computing, Environmental Science, Geography, Geology, Human Biology, Mathematics, Physics or Psychology.
GCSE Mathematics grade B or 5, English Language grade C or 4
IELTS 6.5 overall with at least 5.5 in each component. For other English language qualifications we accept, please see our English language requirements webpages.
Other Qualifications
International Baccalaureate 35 points overall with 16 points from the best 3 Higher Level subjects including two science subjects at HL grade 6
BTEC Distinction, Distinction, Distinction to include sufficient science. We require Distinctions in majority of relevant science units. Please contact the Admissions Team for further advice.
We welcome applications from students with a range of alternative UK and international qualifications, including combinations of qualification. Further guidance on admission to the University, including other qualifications that we accept, frequently asked questions and information on applying, can be found on our general admissions webpages.
Contact Admissions Team + 44 (0) 1524 592028 or via ugadmissions@lancaster.ac.uk
Course Structure
Many of Lancaster's degree programmes are flexible, offering students the opportunity to cover a wide selection of subject areas to complement their main specialism. You will be able to study a range of modules, some examples of which are listed below.
Year 1
-
Aquatic Ecology
This module provides an introduction to the structure and function of aquatic food webs in freshwater, estuarine and marine environments. Emphasis is placed on the role of nutrients (bottom-up control) and predation (top-down control) on participating organisms in their freshwater, estuarine, and marine environments. Students will understand the importance of algae, whether planktonic or attached, in the primary productivity of aquatic ecosystems and how this is affected by nutrient concentration and composition. The way in which anthropogenic influences can alter the balance of aquatic food webs, and the subsequent problems which may arise, is discussed.
There will be practical sessions on areas such as algae, zooplankton and macroinvertebrates. Workshops will cover the analysis of data using excel, and the characteristics of lake trophic status in The Lake District.
-
Biodiversity and Conservation
Introducing the nature of biological diversity and the patterns of distribution of organisms on global, regional and ecosystem scales, students discover the underlying causes of the observed biodiversity patterns and the main current threat to biodiversity. The reasons why species become extinct is explored and then the reasons why species should be preserved. Students will be able to outline the criteria that can be used to identify species and areas of high conservation importance.
Fieldtrips take place on campus, where students will look at sampling techniques and biodiversity, and to sites of special conservation interest in the Arnside and Silverdale AONB. There will also be an excursion to Blackpool Zoo.
-
Biotechnology
Biotechnology is one of the fastest moving fields in the biosciences. Genetic engineering techniques have allowed the manipulation of microorganisms, plants and animals to produce commercially important compounds, or to have improved characteristics. This module examines the techniques that are used in genetic manipulation and looks at examples of how the technology has been applied. The practical outcomes of genome sequencing projects and the way in which knowledge of the human genome can be applied to medicine and forensics are also considered. Practical classes and workshops allow students to perform some of the key techniques for themselves.
-
Cell Structure and Function
This module is an introduction to the structure and function of prokaryotic and eukaryotic cells. The first five lectures of the module will examine the main components of prokaryotic and eukaryotic cells and the way eukaryotic cells are organized into tissues. The techniques used to study cells will also be reviewed. The next two lectures will look in detail at the structure and function of mitochondria and chloroplasts and the chemiosmotic theory. This will be followed by a lecture on the way cells are organised into tissues. The final four lectures will cover reproduction in prokaryotic and eukaryotic cells and the eukaryotic cell cycle. The lectures are supplemented by two practical sessions, the first on light microscopic technique and the second covering organelle isolation
-
Evolutionary Biology
Introducing students to the development of evolutionary theory and the evidence for the evolutionary processes of natural and sexual selection, this module examines the evolutionary relationships of the major groups of organisms, and deals with speciation and human evolution.
Using specific examples of animal behaviour, we demonstrate how an understanding of natural and sexual selection can explain the diverse evolution of body structures, reproductive behaviours and life-history strategies.
-
Genetics
This module examines the way in which genetic information, encoded by the DNA of the cell, is replicated and passed on to each new generation of cells and whole individuals. The ways in which genes affect the characteristics of a cell or organism are explored at the molecular level. The fundamentals of these processes are very similar in all organisms but the unique features of eukaryotes and prokaryotes are highlighted. We will also examine the consequences of mutation and look at some examples of diseases and conditions caused by defective genes and alterations in chromosome number or structure.
-
Global Change Biology
This module examines how the biosphere reacts to environmental change. It concentrates on the responses to changes such as increasing drought, global warming, ozone depletion, and air pollution. Emphasis is placed on understanding plants as the driving force for the effects of environment change on other organisms within terrestrial ecosystems. This will range from consideration of changes in complex natural ecosystems through to effects on humans, through changes in global food production. The module will also consider the direct effects of environmental change on human populations.
You will learn to describe the effects of global warming and pollution on plants and terrestrial ecosystems as well as the links between basic plant physiology and the consequences of environmental change. We also explore the direct and indirect effects of environmental change on human populations. You will take part in workshops that look at the effects of the environment on carbon fixation and water use, and human health and environment change.
-
Global Environmental Challenges
The global environment and human society are now threatened by unprecedented changes resulting from human activities such as intensive agriculture and fossil fuel combustion, as well as facing natural hazards like volcanic eruptions and climatic extremes. This module introduces you to the major contemporary environmental issues and the complexities associated with researching, explaining and managing the Earth's environment. It provides a broad foundation in the skills required to contribute to future understanding and management of global environmental challenges. You will gain a clearer understanding of the connections between social, environmental and biotic processes and explore possible solutions for key environmental issues.
-
Impact of Microbes
This module introduces students to the world of microbiology. They will receive tuition from lecturers working on the cutting edge of microbiological research.
Topics related to viruses, bacteria, fungi and protists will be covered. Hands on practical sessions will help students to understand the dynamics of bacterial growth, how to culture and count microbes, antibiotic resistance assays and identification of bacteria.
Students will start to understand the mechanisms that bacteria use to cause human disease. Several fungi will be examined and students will learn how fungi are exploited in industry. Finally students are introduces to the protists; examine beautiful ciliates and flagellates and watch predatory protozoa in action.
-
Molecules of Life
In this module, students will explore the chemistry of some of the most important molecules to life, including water, nucleic acids, carbohydrates, proteins and lipids. The module begins with an overview of basic chemistry for example atomic structure, bonding, pH and molecular shape. It looks at the properties of water and how these enable water to support life. The structure and bonding within nucleic acids, proteins and carbohydrates are explored with emphasis upon how this is related to function within a cell. Finally, the structure and functions of lipids are described, with emphasis upon the role of lipids, proteins and carbohydrates in biological membranes.
Workshops on this module enable use of RasMol molecular modelling software, making molecular models and problem-based learning.
-
Skills in Biomedical and Life Sciences
This module introduces and provides training in the general skills necessary for the study of bioscience. These include use and care of laboratory equipment such as microscopes, spectrophotometers, micropipettes and centrifuges. It will also teach liquid-handling skills, and to calculate concentrations, volumes and dilution of solutions, particularly the importance and use of the mole concept. MS Excel will be used to generate statistics and to plot curves.
The other main area covered is that of scientific reading and writing. You will learn to recognize good and bad sentences, use correct paragraph structure, to search for, acquire and know how to read scientific literature, and to avoid plagiarism. Finally students will learn the various forms in which science is communicated and the ways public understanding of scientific findings can be distorted.
At the end of this module you will be able to record scientific investigation, collect data, present results, place them in the context of existing scientific literature and write a short scientific report.
-
Zoology
This module will provide you with an understanding of how and why organisms are classified and named, and an appreciation of how identification keys are constructed and used. You will learn to construct simple classificatory and evolutionary trees, and to indicate their significance.
Evolutionary relationships will be evaluated using anatomical and other characteristics, and the distinctive features of major groups of animals will be outlined so that you are able to indicate the functional, evolutionary, and, in some cases, ecological and economic significance of them.
Practical sessions will enable you to take part in the identification of both invertebrate and vertebrate groups.
Core
-
Developmental Biology
This module addresses a range of processes that are fundamental to plant and animal development. The module will provide an introduction to animal embryogenesis, including the cleavage, gastrulation and organogenesis stages. Students will discover how polarity and pattern arise, along with mechanisms for cellular determination and differentiation. Later lectures will address plant embryogenesis and reproductive development. Students will learn how developmental processes are regulated internally and externally, through developmental regulatory genes and via influences from the external environment.
Students will gain the ability to compare and contrast strategies for development in animals and plants and to identify the major structures present in animal embryos. They will develop transferable skills such as an awareness of lab safety, competent use of a compound microscope, and experience of data collection and reporting.
-
Marine and Estuarine Biology
Taking a holistic approach to the study of marine and estuarine ecosystems and melding biology with ecology and environmental science, this module will enhance students’ knowledge in a range of areas spanning from the fundamentals of water as a medium for life and how organisms are adapted to particular challenges, through to whole ecosystem productivity, using the Lancaster locale to inform and exemplify.
Students will discover the heterogeneity of marine and estuarine environments. They will develop an ability to identify the specific challenges faced by organisms living in water, especially with regard to salinity. Additionally, the module will enhance students’ awareness of ecophysiological structure and zonation, and will introduce processes such as aquatic primary production and energy transfer.
-
Spanish-Donana Field Course
Students will explore the diversity of habitats and organisms living in the Doñana natural area and the actions that can be taken to promote the conservation of this biodiversity. They will gain practical experience of the identification, critical observation and accurate recording of plants, invertebrates and birds.
The unique understanding gained by such practical experience will give students an important advantage when it comes to gaining employment in this field.
By the end of this module, students will be able to describe the physical nature of a variety of habitats and the characteristic species associated with them and identify, classify and comment on specimens of plants and animals from those habitats. They will also learn to describe how the distribution and abundance of different plants and animals is determined by the physical conditions and biotic factors in their environments.
In addition to this, students will indicate how the anatomical, physiological and behavioural features of selected organisms are adapted to different habitats and modes of life. Another topic covered will be how human activities affect biological communities, and what can be done to conserve those communities.
Optional
Year 2
-
Beyond LEC? Steps to Career Success
This module contains a series of four interactive workshops that cover all stages of career planning from exploring options to succeeding at recruitment and selection. It provides knowledge of the graduate labour market and techniques for developing personalised career plans to successfully and confidently transition into work or further study.
Students will also come to develop an understanding of the benefits of professional networking, and how to access opportunities for connecting with others in a professional manner. To this end, an effort to create a 'personal brand', which includes an awareness of both strengths and areas for development, is encouraged and can be extremely beneficial after graduation.
The module will be delivered during the summer term (weeks 5 to 8) through a number of timetabled sessions which will help to accommodate a variety of other commitments such as dissertations and summer exams.
-
Experimental Design and Analysis
The aim of this module is to introduce students to understanding the scientific method, designing experiments, and collecting data in an unbiased scientific manner, analysing it using robust statistical techniques and presenting findings in a clear and concise form. Students will be provided with the skills they will need to successfully complete their dissertation projects. They are encouraged to critically appraise information, conduct a wide range of statistical analyses and to present and critically analyse data.
Students will be able to relate the notion of the scientific method to their own scientific endeavour, and will gain the level of knowledge required to measure, describe and discuss the varieties of environmental and ecological systems in the study of natural systems.
Students will learn to design and execute experiments which distinguish effectively between variation due to experimental effects and underlying uncontrolled variation, and will also understand the application of statistical tests to analyse data, taking into account the underlying assumptions of those tests, as well as the uses of computer based statistical packages, such as SPSSx) to analyse data. Critical skills developed on this module will enable students to report their findings in a style appropriate for their audience.
-
Research Design and Delivery
The aim of this module is to provide students with the opportunity to design and undertake a project from start to finish, which will involve working as part of a team and collecting individual and group data in an unbiased scientific manner. Students will develop the ability to distinguish effectively between variation due to robust effects and underlying uncontrolled variation, whilst statistically analysing and presenting their findings to the class in a suitable format.
By the end of the module, students will have the ability to critically appraise information and report the findings of their scientific endeavours to different audiences using a variety of methods, including scientific reports and PowerPoint presentations, in addition to developing a range of generic and specialist skills gained that will be useful in a competitive job market.
Students will be able to understand and integrate information from a variety of sources, whilst utilising skills of written critique of primary and secondary literature. They will also be developed in the ability to interrogate bibliographic databases and summarise pertinent information.
Core
-
Cell Biology
This module explores the interactions that take place both within and between cells and which allow them to perform their function in the whole organism. Students will consider five key topics within cell biology:
- The methods used to study cells and the dynamic nature of the cytoskeleton
- The mechanisms and physiological significance of transport across membranes
- The mechanisms involved in cells receiving and acting upon information from outside of the cell
- The mechanisms of development of whole organisms, examining how individual cells become committed to a particular function as development occurs
- The regulation of the cell cycle, growth, and development. We will illustrate these topics using examples drawn from a range of biological system.
-
Environmental Physiology
Environmental Physiology "crosses the great divide" between animal and plant biology. The scope of this module is broad, extending from the consequences of environmental change on human health to communication between plants. It explores the whole-organism responses of animals and plants to light, to pollution and to disease-causing micro-organisms. It goes on to consider how such responses are controlled and co-ordinated, and how information is communicated between individuals in both animals and plants.
The unifying theme of this module is the central role of physiology in determining a wide range of biological responses, with the overall aim of providing an integrated understanding of the mechanisms by which both animals and plants cope with their environment. Students will gain an appreciation of the complex interactions between plants and animals and their natural environments, and particularly the notion of phenotypic plasticity. Practical work will develop laboratory skills, and assessment will develop skills in literature searching, data analysis, writing and argument.
Students will develop a sophisticated skillset, including the ability to describe mechanisms by which plants and animals perceive environmental signals and co-ordinate their responses to them, as well as being able to describe the effects of ultraviolet light on animals and plants and the mechanisms for protection from its damaging effects. In addition, students will gain the necessary experience required to show how various environmental pollutants affect the health of plants and humans, and will be knowledgeable of the various forms of innate immunity in animals, whilst gaining awareness of the conservation of anti-microbial defence mechanisms during evolution. Finally, students will be able to explain how plants resist attack by herbivorous insects and pathogenic microorganisms.
-
Evolution
Evolution is the fundamental concept in biology and an understanding of its processes and effects are important for biologists in all disciplines. The module aims to show how the morphology and behaviour of animals and plants is adapted to their environment through interactions with their own and other species, including competitors, parasites, predators and prey, and relatives. Students will explore the concept of adaptation to natural and sexual selection pressures at the level of the individual and the effects on the wider population.
Students will gain the ability to describe the roles that variation, heritability and selection play in the evolutionary process, along with a developed understanding of how numerical changes in population occur, and enhanced knowledge of how to analyse such shifts in order to make predictions about future changes. This module will also reinforce students’ understanding of the application of theoretical models, the changing effects of costs and behaviours due to circumstance, and how conflicts of interest might influence the reproductive success of individuals.
Students taking this module will gain a range of transferable skills including: report writing, data analysis and presentation, team working, verbal presentation, summarising technical texts and design of scientific enquiries.
-
Field Biology
Employers expect graduate biologists, especially those aiming for careers as field biologists or ecologists, to have gained experience of basic field biology skills and common survey techniques. This module offers an introduction to the fieldwork and methodology relevant for conducting ecological surveys. Students are taken through a habitat and biodiversity survey, and will develop skills in several areas, such as species identification, monitoring bird breeding parameters, moth trapping, and small mammal trapping.
The weeklong intensive course will take place in the local area and the work will mostly be conducted outdoors. Students will take part in two off-campus excursions, for example, to a species-rich meadow in the Yorkshire Dales, and to sites of highly diverse insect communities in the Morecambe Bay region to see Fritillary butterflies. They will also gain the ability to identify appropriate sampling methods and apply them in the field, as well as developing transferable abilities such as report writing, teamwork, observation skills and safety awareness.
-
Genetics
This module takes a molecular approach to understanding heredity and gene function in organisms ranging from bacteria to man. It begins by reviewing genome diversity and how genomes are replicated accurately, comparing and contrasting replication processes in bacteria and man. The module discusses in detail molecular mechanisms, particularly those that ensure information encoded in the genome is transcribed and translated appropriately to produce cellular proteins.
Students will focus on the importance of maintaining genome stability and damaging effects of mutations in the genome on human health. Examples are drawn from a range of inherited genetic diseases such as phenylketonuria and sickle cell anaemia, paying particular focus to how mutations in key genes are driving cancer development.
Teaching is delivered by a series of lectures supported by varied practical work, workshops, guided reading and online resources. Laboratory practicals include investigating how exposure of bacteria to ultraviolet light induces mutations – providing a model for understanding how skin cancer may develop as a consequence of excessive sun exposure.
-
Populations to Ecosystems
Recent emphasis on global change and biodiversity has raised awareness of the importance of species and their interactions in determining how sustainable our lifestyle is. This module explores the factors that drive population and community dynamics, with a strong focus on multi-trophic interactions and terrestrial ecosystems.
Students will be introduced to population ecology and will discover the abiotic factors that regulate populations, life history strategies of populations, competitive interactions within populations, and meta-population dynamics, in addition to an understanding of how species interact both within and across trophic levels. The module exposes students to the belowground system and will look at how the species interactions and soil communities discussed impact on community structure and dynamics. The module aims to give students a fundamental understanding of ecology - such knowledge is essential for informing conservation and sustainable land-use practices, and efforts to mitigate climate change.
In order to complete this module, students will develop the ability to outline the primary factors that drive population dynamics, whilst critically discussing examples, and will reinforce their understanding of the implications of species interactions for community dynamics. Students will also gain a critical awareness of biotic responses and their contribution to climate change.
-
Principles of Biodiversity Conservation
This module aims to provide students with broad understanding of the discipline of conservation biology. The module starts by defining biodiversity, discussing its distribution in space and time, and its value to humankind, before examining the key anthropogenic threats driving recent enhanced rates of biodiversity loss. The module then focuses on the challenges for conservation of biodiversity at several levels of the biological hierarchy: genes, species, communities and ecosystems, and the techniques used by conservationists at these levels. The final part of the module looks at the practice of conservation through discussion of prioritisation, reserve design and national and international conservation policy and regulation.
Students will develop a range of skills including the ability to discuss the principle threats to global biodiversity and the rationale for biodiversity conservation, in addition to application of a range of metrics to quantify biodiversity. Students will gain a critical understanding of the various approaches to conserving genetic, species and ecosystem diversity, as well as an enhanced knowledge of quantification of popularisation approaches to prioritisation of conservation goals, and how nature reserves can be designed to improve conservation potential.
-
Vertebrate Biology
Vertebrates (including fish, amphibians, reptiles, birds and mammals) display a staggering diversity of shapes and sizes, and are adapted to a wide array of environments, from hot deserts to freezing oceans. The aim of this module is to introduce this broad range of forms and functions, putting physiological and behavioural processes firmly within a whole organism and evolutionary context.
This module will introduce students to the major vertebrate taxonomic groups: it will explore how they have evolved to exploit different environmental niches on land, in water and in flight; and how their anatomy, reproduction, thermoregulation, etc. have all become fine-tuned to cope with the challenges of their evolved lifestyle. Students will be able to apply their general knowledge of vertebrate biology to species-specific examples: comparing and contrasting different forms and functions; and critically evaluating hypotheses proposed in order to explain vertebrate diversity.
They will also gain more generic transferable skills such as critical discussion, application of knowledge to new situations, data analysis and report writing. Throughout the module, students will consider how form, function and strategy will impact the vulnerability of vertebrates to on-going environmental change.
Optional
Year 3
-
Dissertation
The dissertation project is an individual and individually supervised extensive project ending in submission of a substantial dissertation report. Students will choose from a set of dissertation research areas or topics based on a LEC-wide list compiled by the module conveyor. There will be regular meetings with dissertation supervisor, and students will develop a specific dissertation topic, along with research questions, aims, objectives and methods. This will be followed by a period of background reading, discussion and planning, before their dissertation drafts are analysed, marked and a final draft of up to 10,000 is submitted in week 11 of the term.
Students must take active involvement in the module and make good use of interaction with the supervisor in order to deepen their subject specific knowledge and ability to work independently. Depending on the discipline, style and topic, students may focus on methods, field techniques, lab techniques, or a combination of computer and software tools.
You will have the option of taking either a Dissertation or a Dissertation with External Partner. However, please note that students taking a Study Abroad year must take the Dissertation option.
-
Dissertation with External Partner
The placement dissertation provides you with experience of the workplace in a context that is relevant to your academic study. It enables you to take your academic knowledge and to experience at first hand how it can be applied in the workplace. You will also get to see how the requirements of a particular organisation influence the interpretation and implementation of academic knowledge. The placement thus provides a unique opportunity to study the ways in which the academic and commercial worlds intersect and to appreciate both the opportunities and constraints involved in applying geographical, environmental and biological knowledge in a real-world context. The experience will both enhance your academic knowledge and understanding and improve your employability in sectors relevant to your degree.
You will have the option of taking either a Dissertation or a Dissertation with External Partner. However, please note that students taking a Study Abroad year may not take this option, as the work placement element would clash with the year abroad.
Core
-
Animal Behaviour
This module explores how and why animals behave in the way that they do, building on many of the major themes of the Evolution module to highlight the links between behaviour, ecology and evolution. The central aim will be to understand the fitness consequences of behaviour - by focusing on three of the most important topics in behavioural research (reproduction, sociality and communication), we will investigate how the behaviour of an individual has evolved to maximise its survival and reproductive success.
Students will gain an understanding of how and why we study animal behaviour, at the same time developing their appreciation of scientific best practice. Students will be encouraged to relate specific knowledge to broader issues in ecology and evolution, and to critically reflect on what animal behaviour can tell us about behaviour in our own species. Additionally, students will be able to describe what behaviour actually is and understand the major factors that influence how animals (including humans) behave. Students will also develop the level of knowledge necessary to discuss a wide diversity of animal behaviours in a broad range of species, and describe the major approaches to understanding behaviour and apply Tinbergen's four questions to behavioural processes. Students will gain an enhanced understanding in a range of areas, including the importance of both nature and nurture in the evolution of behaviour, the ecological pressures that shape behaviour, the importance of the fitness consequences of behaviour at the individual level and the concepts of kin selection and inclusive fitness
-
Biology of Ageing
For 50 years, thanks to evolutionary theory, we’ve known why we are fated to age and die, but our understanding of the mechanisms has been a lengthy evolution in itself. Only relatively recently, with the use of modern molecular biology tools, do we begin to understand the mechanistic basis of the ageing process, from early notions about rates of living to current ideas about modular yet interacting mechanisms including autophagy, protein synthesis, nutrient sensing, insulin-like signalling and disease resistance. Even now we do not clearly know what makes us age. Ageing is perhaps the most multidisciplinary area of study and is certainly one of the last great mysteries in biology.
This module introduces the area and the methodologies with which ageing is studied. Teaching is through lectures, workshops, practical work, individual and group-based coursework and private study.
-
Cell Cycle and Stem Cells
This module looks at the fundamental mechanisms regulating cell proliferation and differentiation and how the cell cycle is central to the development and maintenance of cells and tissues including the role of stem cells. It covers the mechanisms by which cells become terminally differentiated to perform specialised functions and how this process depends on coordinated regulation of the cell cycle, gene expression and apoptosis. The cell cycle’s role in the regulation and differentiation of both somatic and stem cells will be covered. Students will examine the roles of embryonic stem cells in development, and the roles of adult stem cells in the maintenance of various tissues in the adult organism. The module will look at both established and recently developed stem cell technologies. This includes adult, embryonic, cloned embryonic and induced pluripotent stem cell technologies. The pros and cons of autogenic and allogenic therapies will be discussed. The results of the latest clinical trials and the ethics of the different stem cell technologies will also be covered.
-
Cell Signalling 1
The ability of cells to communicate with one another using signalling pathways is of fundamental importance in multicellular organisms such as mammals. Cell signalling enables the transmission of information that is required for the correct co-ordination of metabolism, growth and development.
This module revises the basic principles of cellular communication, exploring the molecular basis of signalling in detail by using key signalling pathways as examples. The combination of Lectures and Workshops allows students to evaluate influential scientific discoveries, whilst Laboratory practicals provide the opportunity to put theory into practice.
-
Coral Reef Ecology
Coral reefs are one of the most biodiverse ecosystems on Earth and have inspired the development of some of the most far-reaching theories in ecology. These ecosystems are distributed throughout the tropics and often dominate the shallow seas. They are also important for many millions of people worldwide yet are under increasing threat from climate change and more direct anthropogenic disturbance. This module aims to provide a solid grounding in coral reef biology, ecology and evolution, with a focus on corals and reef fishes, building on broad ecological principles laid down in previous years. Students will apply this understanding to evaluate threats and their potential solutions, developing an appreciation of the precarious nature of the most complex habitat in the oceans. Specifically, the students will explore how and where coral reefs have emerged through time and adapted to life in the oceans, the delicate balance of interactions that allow their enormous variety of species to coexist, and emerging threats and solutions to their continued existence.
-
Environmental Pathogens
Microbiology for the biomedical scientist comprises screening samples to identify and assess microbiological pathogens that cause disease and, enable front line medical staff to choose the correct therapy for successful eradication of the infection. Increasing numbers of these infections are community acquired and many are contracted from, or in, the environment. The environment therefore plays an increasing role in the life cycle and ecology of many pathogens. This in turn, is having an increasing impact on human health and national health services. The increase is a combination of changing environmental conditions (such as land use changes, global warming) and an ever evolving microbial community, most of which do not harm but a few can cause mild to fatal diseases when the opportunity arises. Also cycling in the environment are obligate pathogens which will cause infections if contracted. Furthermore, there are new diseases emerging (e.g. Ebola) and others thought to have been controlled are now re-emerging such as cholera. Using specific microbial pathogens as examples, this module examines the factors and interactions that allow microbial infections to be transmitted from the environment to humans and how their life cycle plays an important role in their emergence, persistence, transmission and infection. It also examines antibiotic resistance: how it has emerged, the different types of resistance, its management and the complications that it imposes on the treatment of these diseases. After attending this module you will still be able to go out into the natural environment but, as a result, you may be a little more cautious.
Assessment:
1. Exam: 2 hour paper with two questions in sections A and B and you are required to answer one question from each.
2. Coursework is an extended essay of 2000 words based on the lectures and field trip. The title will be announced in the first lecture.
-
Environmental Plant Biology
The aim of this module is to illustrate some of the ways in which plants achieve this and to provide an insight into the physiological mechanisms that underlie plant ecology. Students will explore how plants respond to specific environmental cues and the ways in which they are able to adapt to a variety of stressful environments. All of these processes will be viewed from both an agricultural and an ecological perspective. Students will also gain an understanding of the environmental constraints on plant growth and productivity and an appreciation of the degree of plasticity and adaptability that plants display. They will develop an appreciation of the importance of a detailed understanding of these plant traits if we are to achieve the increases in crop productivity (through management or breeding) that will be required for food security in the face of global climate change.
This module will equip students with the ability to describe a range of features related to the subject, including the range of plant photomorphogenic and photoperiodic responses to light and their ecological significance, the response of plants and communities to high temperature and salinity, the rationale behind the use of deficit irrigation to increase water use efficiency , plant adaptations for efficient extraction of nutrients from the soil, the way in which leaves and roots function in drought-prone environments, and the regulation of growth of leaves and roots in drought-prone environments. Students will also develop the skill level required identify the practical applications of modifying plant responses to their light environment, discussing the problems posed by a hot dry climate for plant growth and functioning and the rationale for breeding/engineering plants for increased water use efficiency, in addition to gaining the necessary understanding of the cellular and whole plant tissue basis of plant drought resistance and the physiological basis of salt tolerance.
-
Genetics
How is DNA, the fundamental building block of life, organised and expressed in different types of organisms such as bacteria and humans? Lectures comparing eukaryotic and prokaryotic gene organisation and expression, chromatin structure and DNA repair will seek to answer this question. In addition, you will study the application of genetics to science and technology during practical and workshop sessions, providing you with the opportunity to develop group and independent working skills whilst reinforcing theoretic concepts.
-
Global Change Biology: Challenges and Solutions
This module will examine how biological understanding can contribute to “global change solutions” in respect to a number of key issues, including food production, biofuels and the continuing protection of the ozone layer. However, it will also place that biological understanding in its wider context, not least by considering how the same fundamental information on specific biological approaches can lead to diametrically opposed positions on the utility and desirability of actually using the biology (e.g. the debate around GM crops).
Students will examine how different interpretations of biological technology relate to the underlying biology, and will additionally benefit from a workshop that will consider the needs of “science communication” beyond the scientific community. The module will not only provide a detailed understanding of a range of “global change solutions”, it will also consider how biology is used (and abused?) in assessing climate change and the possible responses and solutions.
Successful students will be able to describe the biology of a range of examples of both responses to global change, and possible biology-based solutions to ameliorate those responses, and recognise the wider context of the underlying biology of global change effects and/or solutions, for example in policy or the practical deployment of new technologies. Students will develop their critical skills, enabling them to evaluate the biological evidence in relation to global change effects and solutions, and assess how such evidence is used to support sometimes diametrically opposed views specific issues. This module will enhance students’ ability to write effective, concise, accurate summaries of complex biological topics in styles appropriate for different audiences, e.g. the scientific community, policy makers or the general public.
-
Host-Parasite Interactions
Plants and animals in their natural environments interact with a wide range of other living organisms. These include both beneficial interactions and damaging encounters with parasites, pathogens and herbivores. The module examines the different kinds of organisms that have evolved a parasitic lifestyle and the ways in which they parasitize their hosts. In parallel, the module will introduce the different strategies that plants and animals use to defend themselves, including the recruitment of other organisms to act as allies. The continuing conflict between hosts and parasites results in a so-called 'evolutionary arms race'.
Practical work will develop laboratory skills, and assessment will develop skills in data analysis, writing and argument. The module will also examine the evolutionary costs and benefits of defence, and the evidence for short and long-term immunological memory. Since the module is aimed primarily at addressing ecological and physiological questions rather than the biomedical aspects of parasitology, the focus will be on invertebrate rather than vertebrate hosts.
Students will be able to describe a range of subject specific topics, such as the main groups of parasitic organisms and their lifestyles; the structural and behavioural defences against parasites, pathogens and herbivores in plants and animals, and the key features of innate and adaptive immunity in plants and animals. This module will also enhance students’ ability to identify the main selective processes shaping the evolution of host resistance to parasites, along with providing explanations as to why many defence mechanisms are inducible rather than permanently expressed, and how specialist herbivores and parasites have co-evolved with their hosts to overcome resistance.
-
Issues in Conservation Biology
In this module, students will be shown how, through manipulation of species, communities and ecosystems, habitats can be managed in a sustainable way that preserves and enhances their aesthetic, scientific, recreational, and often utilitarian, value. The creation of new habitats will be considered, as well as management of existing areas of conservation interest. The module is largely taught by external lecturers who are directly involved in the application of ecological principles to practical problems.
Students will develop the level of ability required to describe the nature of selected habitat types, as well as explaining a series of underlying ecological processes which necessitate management. Students will also be able to identify the techniques used for conservation management specific to a range of habitat types, in addition to reinforcing a range of transferrable skills, such as the ability to present scientific data clearly and concisely, in both written and oral format. Students will learn to work autonomously as well as being involved in group work.
Join a discussion and debate where you are encouraged to critically examine primary literature and ideas on topical issues in conservation biology in the UK and globally. Gain an understanding of the key factors that constrain conservation and of the interdisciplinary nature of conservation problems in the real world.
-
Neurobiology
Nervous system function, from formation in the embryo to sensory systems and the neural control of complex behaviours, is the focus of this module. The emphasis is on model systems and the use of genetic tools to elucidate developmental pathways and neural circuits. Practical exercises are used to illustrate some of the functions of nervous systems and how these can be manipulated by genetic intervention.
Students are encouraged to access and evaluate information from a variety of sources and to communicate the principles in a way that is well-organised, topical, and recognises the limits of current hypotheses. On completion of the module, students will be equipped with practical techniques including data collection, analysis and interpretation.
-
Scotland Field Course
In this module, students will be shown how, through manipulation of species, communities and ecosystems, habitats can be managed in a sustainable way that preserves and enhances their aesthetic, scientific, recreational, and often utilitarian, value. The creation of new habitats will be considered, as well as management of existing areas of conservation interest. The module is largely taught by external lecturers who are directly involved in the application of ecological principles to practical problems.
Students will develop the level of ability required to describe the nature of selected habitat types, as well as explaining a series of underlying ecological processes which necessitate management. Students will also be able to identify the techniques used for conservation management specific to a range of habitat types, in addition to reinforcing a range of transferrable skills, such as the ability to present scientific data clearly and concisely, in both written and oral format. Students will learn to work autonomously as well as being involved in group work.
-
Sustainable Agriculture
Modern resource-intensive agriculture has proved incredibly successful in delivering relatively abundant, cheap food (at least in the developed world), but sometimes at considerable environmental cost. Therefore the general public is usually keen to embrace "sustainable agriculture" but is generally unaware of the economic and food production costs of proposed changes in crop management. By emphasising the concept of crop resource use efficiency, this module focuses on the viability of less intensive agricultural systems.
Students will critically examine primary literature on topical issues concerning the sustainability of different agricultural systems. They will gain an understanding of the key factors constraining food production, and the environmental and food production consequences of different crop production systems.
In addition to gaining the ability to identify key issues affecting the sustainability of agriculture, students will critically appraise the literature on these issues, and will develop the skillset required to recognise the economic and societal problems constraining the adoption of more environmentally sustainable agriculture. Ultimately, students will gain the ability to discuss alternative scenarios and solutions for key environmental problems associated with agriculture and document said issues in a cogent and critical manner.
-
Tropical Biology & Conservation
Information for this module is currently unavailable.
-
Tropical Diseases
This module is presented by academics with many years’ experience working on international tropical disease research. In the era of increasing international travel and trade, and considering the potential effects of climate change, parasites and pathogens that cause tropical diseases are an increasingly important group of organisms globally. These pathogens include viruses, bacteria, protists, worms and arthropods of various kinds.
Students will focus on the biology of the major pathogens including their life cycles, transmission mechanisms, pathology, diagnosis, treatment and control. There will be an emphasis on insect transmitted diseases such as malaria, dengue and neglected diseases such as leishmaniasis. Students will discuss international public health, and specific factors that prevent successful control within economically deprived communities.
Molecular approaches will not be covered in detail. Case study workshops will look at disease outbreaks, and practical sessions will explore and develop concepts from lectures and demonstrate some practical techniques that can be used to facilitate research into tropical diseases.
Optional
Lancaster University offers a range of programmes, some of which follow a structured study programme, and others which offer the chance for you to devise a more flexible programme. We divide academic study into two sections - Part 1 (Year 1) and Part 2 (Year 2, 3 and sometimes 4). For most programmes Part 1 requires you to study 120 credits spread over at least three modules which, depending upon your programme, will be drawn from one, two or three different academic subjects. A higher degree of specialisation then develops in subsequent years. For more information about our teaching methods at Lancaster visit our Teaching and Learning section.
Information contained on the website with respect to modules is correct at the time of publication, but changes may be necessary, for example as a result of student feedback, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes, and new research.
Careers
Careers
Our programmes maintain an excellent record for graduate prospects. A degree in biology opens up a wealth of opportunities in careers ranging from Environmental Microbiologist, Nature Conservation officer and School Teacher, along with academic research options, for example in soil science and crop science.
In addition to developing your knowledge in biology, a degree at Lancaster will equip you with a range of computing, intellectual, practical, numerical and interpersonal skills. The abilities gained on the programme will increase your appeal to employers in a wide variety of sectors, and our careers service offers help and advice for all of our graduates for as long you need it.
If you wish to enhance your career prospects by extending your study to postgraduate level, you may wish to undertake a PhD at our brand new Graduate School, where you can join our vibrant community of PhD students and make a direct contribution to the world-class research output, whilst developing the skills that you need to enjoy a rewarding career in your chosen field.
We offer a variety of extra-curricular activities and volunteering opportunities that enable you to explore your interests and enhance your CV. Our weekly careers bulletin and careers blogs are written by student volunteers, and inform you of careers events. The Students’ Union-run Green Lancaster programme offers placements with external organisations, allowing students to gain volunteering experience at weekends by working in the local community, taking part in a wide range of activities and developing their practical skills.
Lancaster University is dedicated to ensuring you not only gain a highly reputable degree, but that you also graduate with relevant life and work based skills. We are unique in that every student is eligible to participate in The Lancaster Award which offers you the opportunity to complete key activities such as work experience, employability/career development, campus community and social development. Visit our Employability section for full details.
Fees and Funding
Fees
Our annual tuition fee is set for a 12-month session, starting in the October of your year of study.
Our Undergraduate Tuition Fees for 2019/20 are:
UK/EU | Overseas |
---|---|
£9,250 | £20,500 |
Tuition fees for programmes are set annually for all new and continuing students. If you are studying on a course of more than one year’s duration, the fees for subsequent years of your programme are likely to increase each year. Such increases are normally calculated based on increases in the costs incurred by the institution, or in relation to UK government regulations which set the maximum fee for certain categories of student.
For the majority of undergraduate students, the most recent annual increase was 2.8%. Any change in fee rates will be communicated to students and applicants prior to the start of the academic year in question, and normally at least eight months prior to enrolment. Further details can be found in our Terms and Conditions.
Channel Islands and the Isle of Man
Some science and medicine courses have higher fees for students from the Channel Islands and the Isle of Man. You can find more details here: Island Students.
Funding
For full details of the University's financial support packages including eligibility criteria, please visit our fees and funding page
Students also need to consider further costs which may include books, stationery, printing, photocopying, binding and general subsistence on trips and visits. Following graduation it may be necessary to take out subscriptions to professional bodies and to buy business attire for job interviews.
-
Course Overview
Course Overview
Discover how animals and plants function at an organism level; explore how they interact with their environment; and tackle the global challenges that affect them. Gain hands-on experience with our amazing field trips to Spain, Kenya or Scotland.
Throughout your degree, you will be taught by internationally-renowned academics, and will have access to our state-of-the-art laboratories, which offer excellent facilities for practical work. You may participate in half and full-day excursions that benefit from our local, dynamic surroundings of the Lake District, Yorkshire Dales, Bowland Fells and Morecambe Bay, in addition to residential field work.
Our first year modules form a well-rounded introduction to the fundamental features of biology where you will gain the opportunity to link key global challenges, such as maintaining biodiversity, to human use of the environment and human health.
We offer flexible study paths that can be tailored to your own interests. In particular, in your second and final year of study, you can choose from a host of optional modules to develop your knowledge in specific aspects of biology, whilst gaining advanced techniques such as experimental design, data analysis and research delivery.
Our international field trips provide exciting opportunities. You may explore the Doñana National Park in the southwest of Spain, which is home to a plethora of plant, bird and animal species, including the world’s most endangered cat, the Iberian lynx; you can visit some of the UK’s last remaining natural habitats in rural Scotland, and witness a range of animals including red deer, osprey, mountain hare, hen harrier and golden eagle; or contribute to an expert-led study of the Rift Valley of Kenya, where we will evaluate the challenging balance between tropical conversation and human activity.
Your final year will feature a dissertation project where you may choose to make use of our high-quality laboratories and cutting-edge instrumentation, or undertake field-based work, such as contributing to ongoing research projects in the UK or overseas. Alternatively, you can choose to complete your dissertation with a work placement, benefitting from our strong links with industry.
During your degree, you may be able to move to our MSci Biology which includes all the content available on this degree as well as a fourth year offering a variety of Masters level modules and enabling you to undertake an extended research project. There is also a Study Abroad BSc Hons Biology where you spend Year 2 at one of our partner universities in North America or Australasia.
-
Entry Requirements
Entry Requirements
Grade Requirements
A Level AAB
Required Subjects A level grade AB in two sciences from the following; Biology, Chemistry, Computing, Environmental Science, Geography, Geology, Human Biology, Mathematics, Physics or Psychology.
GCSE Mathematics grade B or 5, English Language grade C or 4
IELTS 6.5 overall with at least 5.5 in each component. For other English language qualifications we accept, please see our English language requirements webpages.
Other Qualifications
International Baccalaureate 35 points overall with 16 points from the best 3 Higher Level subjects including two science subjects at HL grade 6
BTEC Distinction, Distinction, Distinction to include sufficient science. We require Distinctions in majority of relevant science units. Please contact the Admissions Team for further advice.
We welcome applications from students with a range of alternative UK and international qualifications, including combinations of qualification. Further guidance on admission to the University, including other qualifications that we accept, frequently asked questions and information on applying, can be found on our general admissions webpages.
Contact Admissions Team + 44 (0) 1524 592028 or via ugadmissions@lancaster.ac.uk
-
Course Structure
Course Structure
Many of Lancaster's degree programmes are flexible, offering students the opportunity to cover a wide selection of subject areas to complement their main specialism. You will be able to study a range of modules, some examples of which are listed below.
Year 1
-
Aquatic Ecology
This module provides an introduction to the structure and function of aquatic food webs in freshwater, estuarine and marine environments. Emphasis is placed on the role of nutrients (bottom-up control) and predation (top-down control) on participating organisms in their freshwater, estuarine, and marine environments. Students will understand the importance of algae, whether planktonic or attached, in the primary productivity of aquatic ecosystems and how this is affected by nutrient concentration and composition. The way in which anthropogenic influences can alter the balance of aquatic food webs, and the subsequent problems which may arise, is discussed.
There will be practical sessions on areas such as algae, zooplankton and macroinvertebrates. Workshops will cover the analysis of data using excel, and the characteristics of lake trophic status in The Lake District.
-
Biodiversity and Conservation
Introducing the nature of biological diversity and the patterns of distribution of organisms on global, regional and ecosystem scales, students discover the underlying causes of the observed biodiversity patterns and the main current threat to biodiversity. The reasons why species become extinct is explored and then the reasons why species should be preserved. Students will be able to outline the criteria that can be used to identify species and areas of high conservation importance.
Fieldtrips take place on campus, where students will look at sampling techniques and biodiversity, and to sites of special conservation interest in the Arnside and Silverdale AONB. There will also be an excursion to Blackpool Zoo.
-
Biotechnology
Biotechnology is one of the fastest moving fields in the biosciences. Genetic engineering techniques have allowed the manipulation of microorganisms, plants and animals to produce commercially important compounds, or to have improved characteristics. This module examines the techniques that are used in genetic manipulation and looks at examples of how the technology has been applied. The practical outcomes of genome sequencing projects and the way in which knowledge of the human genome can be applied to medicine and forensics are also considered. Practical classes and workshops allow students to perform some of the key techniques for themselves.
-
Cell Structure and Function
This module is an introduction to the structure and function of prokaryotic and eukaryotic cells. The first five lectures of the module will examine the main components of prokaryotic and eukaryotic cells and the way eukaryotic cells are organized into tissues. The techniques used to study cells will also be reviewed. The next two lectures will look in detail at the structure and function of mitochondria and chloroplasts and the chemiosmotic theory. This will be followed by a lecture on the way cells are organised into tissues. The final four lectures will cover reproduction in prokaryotic and eukaryotic cells and the eukaryotic cell cycle. The lectures are supplemented by two practical sessions, the first on light microscopic technique and the second covering organelle isolation
-
Evolutionary Biology
Introducing students to the development of evolutionary theory and the evidence for the evolutionary processes of natural and sexual selection, this module examines the evolutionary relationships of the major groups of organisms, and deals with speciation and human evolution.
Using specific examples of animal behaviour, we demonstrate how an understanding of natural and sexual selection can explain the diverse evolution of body structures, reproductive behaviours and life-history strategies.
-
Genetics
This module examines the way in which genetic information, encoded by the DNA of the cell, is replicated and passed on to each new generation of cells and whole individuals. The ways in which genes affect the characteristics of a cell or organism are explored at the molecular level. The fundamentals of these processes are very similar in all organisms but the unique features of eukaryotes and prokaryotes are highlighted. We will also examine the consequences of mutation and look at some examples of diseases and conditions caused by defective genes and alterations in chromosome number or structure.
-
Global Change Biology
This module examines how the biosphere reacts to environmental change. It concentrates on the responses to changes such as increasing drought, global warming, ozone depletion, and air pollution. Emphasis is placed on understanding plants as the driving force for the effects of environment change on other organisms within terrestrial ecosystems. This will range from consideration of changes in complex natural ecosystems through to effects on humans, through changes in global food production. The module will also consider the direct effects of environmental change on human populations.
You will learn to describe the effects of global warming and pollution on plants and terrestrial ecosystems as well as the links between basic plant physiology and the consequences of environmental change. We also explore the direct and indirect effects of environmental change on human populations. You will take part in workshops that look at the effects of the environment on carbon fixation and water use, and human health and environment change.
-
Global Environmental Challenges
The global environment and human society are now threatened by unprecedented changes resulting from human activities such as intensive agriculture and fossil fuel combustion, as well as facing natural hazards like volcanic eruptions and climatic extremes. This module introduces you to the major contemporary environmental issues and the complexities associated with researching, explaining and managing the Earth's environment. It provides a broad foundation in the skills required to contribute to future understanding and management of global environmental challenges. You will gain a clearer understanding of the connections between social, environmental and biotic processes and explore possible solutions for key environmental issues.
-
Impact of Microbes
This module introduces students to the world of microbiology. They will receive tuition from lecturers working on the cutting edge of microbiological research.
Topics related to viruses, bacteria, fungi and protists will be covered. Hands on practical sessions will help students to understand the dynamics of bacterial growth, how to culture and count microbes, antibiotic resistance assays and identification of bacteria.
Students will start to understand the mechanisms that bacteria use to cause human disease. Several fungi will be examined and students will learn how fungi are exploited in industry. Finally students are introduces to the protists; examine beautiful ciliates and flagellates and watch predatory protozoa in action.
-
Molecules of Life
In this module, students will explore the chemistry of some of the most important molecules to life, including water, nucleic acids, carbohydrates, proteins and lipids. The module begins with an overview of basic chemistry for example atomic structure, bonding, pH and molecular shape. It looks at the properties of water and how these enable water to support life. The structure and bonding within nucleic acids, proteins and carbohydrates are explored with emphasis upon how this is related to function within a cell. Finally, the structure and functions of lipids are described, with emphasis upon the role of lipids, proteins and carbohydrates in biological membranes.
Workshops on this module enable use of RasMol molecular modelling software, making molecular models and problem-based learning.
-
Skills in Biomedical and Life Sciences
This module introduces and provides training in the general skills necessary for the study of bioscience. These include use and care of laboratory equipment such as microscopes, spectrophotometers, micropipettes and centrifuges. It will also teach liquid-handling skills, and to calculate concentrations, volumes and dilution of solutions, particularly the importance and use of the mole concept. MS Excel will be used to generate statistics and to plot curves.
The other main area covered is that of scientific reading and writing. You will learn to recognize good and bad sentences, use correct paragraph structure, to search for, acquire and know how to read scientific literature, and to avoid plagiarism. Finally students will learn the various forms in which science is communicated and the ways public understanding of scientific findings can be distorted.
At the end of this module you will be able to record scientific investigation, collect data, present results, place them in the context of existing scientific literature and write a short scientific report.
-
Zoology
This module will provide you with an understanding of how and why organisms are classified and named, and an appreciation of how identification keys are constructed and used. You will learn to construct simple classificatory and evolutionary trees, and to indicate their significance.
Evolutionary relationships will be evaluated using anatomical and other characteristics, and the distinctive features of major groups of animals will be outlined so that you are able to indicate the functional, evolutionary, and, in some cases, ecological and economic significance of them.
Practical sessions will enable you to take part in the identification of both invertebrate and vertebrate groups.
Core
-
Developmental Biology
This module addresses a range of processes that are fundamental to plant and animal development. The module will provide an introduction to animal embryogenesis, including the cleavage, gastrulation and organogenesis stages. Students will discover how polarity and pattern arise, along with mechanisms for cellular determination and differentiation. Later lectures will address plant embryogenesis and reproductive development. Students will learn how developmental processes are regulated internally and externally, through developmental regulatory genes and via influences from the external environment.
Students will gain the ability to compare and contrast strategies for development in animals and plants and to identify the major structures present in animal embryos. They will develop transferable skills such as an awareness of lab safety, competent use of a compound microscope, and experience of data collection and reporting.
-
Marine and Estuarine Biology
Taking a holistic approach to the study of marine and estuarine ecosystems and melding biology with ecology and environmental science, this module will enhance students’ knowledge in a range of areas spanning from the fundamentals of water as a medium for life and how organisms are adapted to particular challenges, through to whole ecosystem productivity, using the Lancaster locale to inform and exemplify.
Students will discover the heterogeneity of marine and estuarine environments. They will develop an ability to identify the specific challenges faced by organisms living in water, especially with regard to salinity. Additionally, the module will enhance students’ awareness of ecophysiological structure and zonation, and will introduce processes such as aquatic primary production and energy transfer.
-
Spanish-Donana Field Course
Students will explore the diversity of habitats and organisms living in the Doñana natural area and the actions that can be taken to promote the conservation of this biodiversity. They will gain practical experience of the identification, critical observation and accurate recording of plants, invertebrates and birds.
The unique understanding gained by such practical experience will give students an important advantage when it comes to gaining employment in this field.
By the end of this module, students will be able to describe the physical nature of a variety of habitats and the characteristic species associated with them and identify, classify and comment on specimens of plants and animals from those habitats. They will also learn to describe how the distribution and abundance of different plants and animals is determined by the physical conditions and biotic factors in their environments.
In addition to this, students will indicate how the anatomical, physiological and behavioural features of selected organisms are adapted to different habitats and modes of life. Another topic covered will be how human activities affect biological communities, and what can be done to conserve those communities.
Optional
Year 2
-
Beyond LEC? Steps to Career Success
This module contains a series of four interactive workshops that cover all stages of career planning from exploring options to succeeding at recruitment and selection. It provides knowledge of the graduate labour market and techniques for developing personalised career plans to successfully and confidently transition into work or further study.
Students will also come to develop an understanding of the benefits of professional networking, and how to access opportunities for connecting with others in a professional manner. To this end, an effort to create a 'personal brand', which includes an awareness of both strengths and areas for development, is encouraged and can be extremely beneficial after graduation.
The module will be delivered during the summer term (weeks 5 to 8) through a number of timetabled sessions which will help to accommodate a variety of other commitments such as dissertations and summer exams.
-
Experimental Design and Analysis
The aim of this module is to introduce students to understanding the scientific method, designing experiments, and collecting data in an unbiased scientific manner, analysing it using robust statistical techniques and presenting findings in a clear and concise form. Students will be provided with the skills they will need to successfully complete their dissertation projects. They are encouraged to critically appraise information, conduct a wide range of statistical analyses and to present and critically analyse data.
Students will be able to relate the notion of the scientific method to their own scientific endeavour, and will gain the level of knowledge required to measure, describe and discuss the varieties of environmental and ecological systems in the study of natural systems.
Students will learn to design and execute experiments which distinguish effectively between variation due to experimental effects and underlying uncontrolled variation, and will also understand the application of statistical tests to analyse data, taking into account the underlying assumptions of those tests, as well as the uses of computer based statistical packages, such as SPSSx) to analyse data. Critical skills developed on this module will enable students to report their findings in a style appropriate for their audience.
-
Research Design and Delivery
The aim of this module is to provide students with the opportunity to design and undertake a project from start to finish, which will involve working as part of a team and collecting individual and group data in an unbiased scientific manner. Students will develop the ability to distinguish effectively between variation due to robust effects and underlying uncontrolled variation, whilst statistically analysing and presenting their findings to the class in a suitable format.
By the end of the module, students will have the ability to critically appraise information and report the findings of their scientific endeavours to different audiences using a variety of methods, including scientific reports and PowerPoint presentations, in addition to developing a range of generic and specialist skills gained that will be useful in a competitive job market.
Students will be able to understand and integrate information from a variety of sources, whilst utilising skills of written critique of primary and secondary literature. They will also be developed in the ability to interrogate bibliographic databases and summarise pertinent information.
Core
-
Cell Biology
This module explores the interactions that take place both within and between cells and which allow them to perform their function in the whole organism. Students will consider five key topics within cell biology:
- The methods used to study cells and the dynamic nature of the cytoskeleton
- The mechanisms and physiological significance of transport across membranes
- The mechanisms involved in cells receiving and acting upon information from outside of the cell
- The mechanisms of development of whole organisms, examining how individual cells become committed to a particular function as development occurs
- The regulation of the cell cycle, growth, and development. We will illustrate these topics using examples drawn from a range of biological system.
-
Environmental Physiology
Environmental Physiology "crosses the great divide" between animal and plant biology. The scope of this module is broad, extending from the consequences of environmental change on human health to communication between plants. It explores the whole-organism responses of animals and plants to light, to pollution and to disease-causing micro-organisms. It goes on to consider how such responses are controlled and co-ordinated, and how information is communicated between individuals in both animals and plants.
The unifying theme of this module is the central role of physiology in determining a wide range of biological responses, with the overall aim of providing an integrated understanding of the mechanisms by which both animals and plants cope with their environment. Students will gain an appreciation of the complex interactions between plants and animals and their natural environments, and particularly the notion of phenotypic plasticity. Practical work will develop laboratory skills, and assessment will develop skills in literature searching, data analysis, writing and argument.
Students will develop a sophisticated skillset, including the ability to describe mechanisms by which plants and animals perceive environmental signals and co-ordinate their responses to them, as well as being able to describe the effects of ultraviolet light on animals and plants and the mechanisms for protection from its damaging effects. In addition, students will gain the necessary experience required to show how various environmental pollutants affect the health of plants and humans, and will be knowledgeable of the various forms of innate immunity in animals, whilst gaining awareness of the conservation of anti-microbial defence mechanisms during evolution. Finally, students will be able to explain how plants resist attack by herbivorous insects and pathogenic microorganisms.
-
Evolution
Evolution is the fundamental concept in biology and an understanding of its processes and effects are important for biologists in all disciplines. The module aims to show how the morphology and behaviour of animals and plants is adapted to their environment through interactions with their own and other species, including competitors, parasites, predators and prey, and relatives. Students will explore the concept of adaptation to natural and sexual selection pressures at the level of the individual and the effects on the wider population.
Students will gain the ability to describe the roles that variation, heritability and selection play in the evolutionary process, along with a developed understanding of how numerical changes in population occur, and enhanced knowledge of how to analyse such shifts in order to make predictions about future changes. This module will also reinforce students’ understanding of the application of theoretical models, the changing effects of costs and behaviours due to circumstance, and how conflicts of interest might influence the reproductive success of individuals.
Students taking this module will gain a range of transferable skills including: report writing, data analysis and presentation, team working, verbal presentation, summarising technical texts and design of scientific enquiries.
-
Field Biology
Employers expect graduate biologists, especially those aiming for careers as field biologists or ecologists, to have gained experience of basic field biology skills and common survey techniques. This module offers an introduction to the fieldwork and methodology relevant for conducting ecological surveys. Students are taken through a habitat and biodiversity survey, and will develop skills in several areas, such as species identification, monitoring bird breeding parameters, moth trapping, and small mammal trapping.
The weeklong intensive course will take place in the local area and the work will mostly be conducted outdoors. Students will take part in two off-campus excursions, for example, to a species-rich meadow in the Yorkshire Dales, and to sites of highly diverse insect communities in the Morecambe Bay region to see Fritillary butterflies. They will also gain the ability to identify appropriate sampling methods and apply them in the field, as well as developing transferable abilities such as report writing, teamwork, observation skills and safety awareness.
-
Genetics
This module takes a molecular approach to understanding heredity and gene function in organisms ranging from bacteria to man. It begins by reviewing genome diversity and how genomes are replicated accurately, comparing and contrasting replication processes in bacteria and man. The module discusses in detail molecular mechanisms, particularly those that ensure information encoded in the genome is transcribed and translated appropriately to produce cellular proteins.
Students will focus on the importance of maintaining genome stability and damaging effects of mutations in the genome on human health. Examples are drawn from a range of inherited genetic diseases such as phenylketonuria and sickle cell anaemia, paying particular focus to how mutations in key genes are driving cancer development.
Teaching is delivered by a series of lectures supported by varied practical work, workshops, guided reading and online resources. Laboratory practicals include investigating how exposure of bacteria to ultraviolet light induces mutations – providing a model for understanding how skin cancer may develop as a consequence of excessive sun exposure.
-
Populations to Ecosystems
Recent emphasis on global change and biodiversity has raised awareness of the importance of species and their interactions in determining how sustainable our lifestyle is. This module explores the factors that drive population and community dynamics, with a strong focus on multi-trophic interactions and terrestrial ecosystems.
Students will be introduced to population ecology and will discover the abiotic factors that regulate populations, life history strategies of populations, competitive interactions within populations, and meta-population dynamics, in addition to an understanding of how species interact both within and across trophic levels. The module exposes students to the belowground system and will look at how the species interactions and soil communities discussed impact on community structure and dynamics. The module aims to give students a fundamental understanding of ecology - such knowledge is essential for informing conservation and sustainable land-use practices, and efforts to mitigate climate change.
In order to complete this module, students will develop the ability to outline the primary factors that drive population dynamics, whilst critically discussing examples, and will reinforce their understanding of the implications of species interactions for community dynamics. Students will also gain a critical awareness of biotic responses and their contribution to climate change.
-
Principles of Biodiversity Conservation
This module aims to provide students with broad understanding of the discipline of conservation biology. The module starts by defining biodiversity, discussing its distribution in space and time, and its value to humankind, before examining the key anthropogenic threats driving recent enhanced rates of biodiversity loss. The module then focuses on the challenges for conservation of biodiversity at several levels of the biological hierarchy: genes, species, communities and ecosystems, and the techniques used by conservationists at these levels. The final part of the module looks at the practice of conservation through discussion of prioritisation, reserve design and national and international conservation policy and regulation.
Students will develop a range of skills including the ability to discuss the principle threats to global biodiversity and the rationale for biodiversity conservation, in addition to application of a range of metrics to quantify biodiversity. Students will gain a critical understanding of the various approaches to conserving genetic, species and ecosystem diversity, as well as an enhanced knowledge of quantification of popularisation approaches to prioritisation of conservation goals, and how nature reserves can be designed to improve conservation potential.
-
Vertebrate Biology
Vertebrates (including fish, amphibians, reptiles, birds and mammals) display a staggering diversity of shapes and sizes, and are adapted to a wide array of environments, from hot deserts to freezing oceans. The aim of this module is to introduce this broad range of forms and functions, putting physiological and behavioural processes firmly within a whole organism and evolutionary context.
This module will introduce students to the major vertebrate taxonomic groups: it will explore how they have evolved to exploit different environmental niches on land, in water and in flight; and how their anatomy, reproduction, thermoregulation, etc. have all become fine-tuned to cope with the challenges of their evolved lifestyle. Students will be able to apply their general knowledge of vertebrate biology to species-specific examples: comparing and contrasting different forms and functions; and critically evaluating hypotheses proposed in order to explain vertebrate diversity.
They will also gain more generic transferable skills such as critical discussion, application of knowledge to new situations, data analysis and report writing. Throughout the module, students will consider how form, function and strategy will impact the vulnerability of vertebrates to on-going environmental change.
Optional
Year 3
-
Dissertation
The dissertation project is an individual and individually supervised extensive project ending in submission of a substantial dissertation report. Students will choose from a set of dissertation research areas or topics based on a LEC-wide list compiled by the module conveyor. There will be regular meetings with dissertation supervisor, and students will develop a specific dissertation topic, along with research questions, aims, objectives and methods. This will be followed by a period of background reading, discussion and planning, before their dissertation drafts are analysed, marked and a final draft of up to 10,000 is submitted in week 11 of the term.
Students must take active involvement in the module and make good use of interaction with the supervisor in order to deepen their subject specific knowledge and ability to work independently. Depending on the discipline, style and topic, students may focus on methods, field techniques, lab techniques, or a combination of computer and software tools.
You will have the option of taking either a Dissertation or a Dissertation with External Partner. However, please note that students taking a Study Abroad year must take the Dissertation option.
-
Dissertation with External Partner
The placement dissertation provides you with experience of the workplace in a context that is relevant to your academic study. It enables you to take your academic knowledge and to experience at first hand how it can be applied in the workplace. You will also get to see how the requirements of a particular organisation influence the interpretation and implementation of academic knowledge. The placement thus provides a unique opportunity to study the ways in which the academic and commercial worlds intersect and to appreciate both the opportunities and constraints involved in applying geographical, environmental and biological knowledge in a real-world context. The experience will both enhance your academic knowledge and understanding and improve your employability in sectors relevant to your degree.
You will have the option of taking either a Dissertation or a Dissertation with External Partner. However, please note that students taking a Study Abroad year may not take this option, as the work placement element would clash with the year abroad.
Core
-
Animal Behaviour
This module explores how and why animals behave in the way that they do, building on many of the major themes of the Evolution module to highlight the links between behaviour, ecology and evolution. The central aim will be to understand the fitness consequences of behaviour - by focusing on three of the most important topics in behavioural research (reproduction, sociality and communication), we will investigate how the behaviour of an individual has evolved to maximise its survival and reproductive success.
Students will gain an understanding of how and why we study animal behaviour, at the same time developing their appreciation of scientific best practice. Students will be encouraged to relate specific knowledge to broader issues in ecology and evolution, and to critically reflect on what animal behaviour can tell us about behaviour in our own species. Additionally, students will be able to describe what behaviour actually is and understand the major factors that influence how animals (including humans) behave. Students will also develop the level of knowledge necessary to discuss a wide diversity of animal behaviours in a broad range of species, and describe the major approaches to understanding behaviour and apply Tinbergen's four questions to behavioural processes. Students will gain an enhanced understanding in a range of areas, including the importance of both nature and nurture in the evolution of behaviour, the ecological pressures that shape behaviour, the importance of the fitness consequences of behaviour at the individual level and the concepts of kin selection and inclusive fitness
-
Biology of Ageing
For 50 years, thanks to evolutionary theory, we’ve known why we are fated to age and die, but our understanding of the mechanisms has been a lengthy evolution in itself. Only relatively recently, with the use of modern molecular biology tools, do we begin to understand the mechanistic basis of the ageing process, from early notions about rates of living to current ideas about modular yet interacting mechanisms including autophagy, protein synthesis, nutrient sensing, insulin-like signalling and disease resistance. Even now we do not clearly know what makes us age. Ageing is perhaps the most multidisciplinary area of study and is certainly one of the last great mysteries in biology.
This module introduces the area and the methodologies with which ageing is studied. Teaching is through lectures, workshops, practical work, individual and group-based coursework and private study.
-
Cell Cycle and Stem Cells
This module looks at the fundamental mechanisms regulating cell proliferation and differentiation and how the cell cycle is central to the development and maintenance of cells and tissues including the role of stem cells. It covers the mechanisms by which cells become terminally differentiated to perform specialised functions and how this process depends on coordinated regulation of the cell cycle, gene expression and apoptosis. The cell cycle’s role in the regulation and differentiation of both somatic and stem cells will be covered. Students will examine the roles of embryonic stem cells in development, and the roles of adult stem cells in the maintenance of various tissues in the adult organism. The module will look at both established and recently developed stem cell technologies. This includes adult, embryonic, cloned embryonic and induced pluripotent stem cell technologies. The pros and cons of autogenic and allogenic therapies will be discussed. The results of the latest clinical trials and the ethics of the different stem cell technologies will also be covered.
-
Cell Signalling 1
The ability of cells to communicate with one another using signalling pathways is of fundamental importance in multicellular organisms such as mammals. Cell signalling enables the transmission of information that is required for the correct co-ordination of metabolism, growth and development.
This module revises the basic principles of cellular communication, exploring the molecular basis of signalling in detail by using key signalling pathways as examples. The combination of Lectures and Workshops allows students to evaluate influential scientific discoveries, whilst Laboratory practicals provide the opportunity to put theory into practice.
-
Coral Reef Ecology
Coral reefs are one of the most biodiverse ecosystems on Earth and have inspired the development of some of the most far-reaching theories in ecology. These ecosystems are distributed throughout the tropics and often dominate the shallow seas. They are also important for many millions of people worldwide yet are under increasing threat from climate change and more direct anthropogenic disturbance. This module aims to provide a solid grounding in coral reef biology, ecology and evolution, with a focus on corals and reef fishes, building on broad ecological principles laid down in previous years. Students will apply this understanding to evaluate threats and their potential solutions, developing an appreciation of the precarious nature of the most complex habitat in the oceans. Specifically, the students will explore how and where coral reefs have emerged through time and adapted to life in the oceans, the delicate balance of interactions that allow their enormous variety of species to coexist, and emerging threats and solutions to their continued existence.
-
Environmental Pathogens
Microbiology for the biomedical scientist comprises screening samples to identify and assess microbiological pathogens that cause disease and, enable front line medical staff to choose the correct therapy for successful eradication of the infection. Increasing numbers of these infections are community acquired and many are contracted from, or in, the environment. The environment therefore plays an increasing role in the life cycle and ecology of many pathogens. This in turn, is having an increasing impact on human health and national health services. The increase is a combination of changing environmental conditions (such as land use changes, global warming) and an ever evolving microbial community, most of which do not harm but a few can cause mild to fatal diseases when the opportunity arises. Also cycling in the environment are obligate pathogens which will cause infections if contracted. Furthermore, there are new diseases emerging (e.g. Ebola) and others thought to have been controlled are now re-emerging such as cholera. Using specific microbial pathogens as examples, this module examines the factors and interactions that allow microbial infections to be transmitted from the environment to humans and how their life cycle plays an important role in their emergence, persistence, transmission and infection. It also examines antibiotic resistance: how it has emerged, the different types of resistance, its management and the complications that it imposes on the treatment of these diseases. After attending this module you will still be able to go out into the natural environment but, as a result, you may be a little more cautious.
Assessment:
1. Exam: 2 hour paper with two questions in sections A and B and you are required to answer one question from each.
2. Coursework is an extended essay of 2000 words based on the lectures and field trip. The title will be announced in the first lecture.
-
Environmental Plant Biology
The aim of this module is to illustrate some of the ways in which plants achieve this and to provide an insight into the physiological mechanisms that underlie plant ecology. Students will explore how plants respond to specific environmental cues and the ways in which they are able to adapt to a variety of stressful environments. All of these processes will be viewed from both an agricultural and an ecological perspective. Students will also gain an understanding of the environmental constraints on plant growth and productivity and an appreciation of the degree of plasticity and adaptability that plants display. They will develop an appreciation of the importance of a detailed understanding of these plant traits if we are to achieve the increases in crop productivity (through management or breeding) that will be required for food security in the face of global climate change.
This module will equip students with the ability to describe a range of features related to the subject, including the range of plant photomorphogenic and photoperiodic responses to light and their ecological significance, the response of plants and communities to high temperature and salinity, the rationale behind the use of deficit irrigation to increase water use efficiency , plant adaptations for efficient extraction of nutrients from the soil, the way in which leaves and roots function in drought-prone environments, and the regulation of growth of leaves and roots in drought-prone environments. Students will also develop the skill level required identify the practical applications of modifying plant responses to their light environment, discussing the problems posed by a hot dry climate for plant growth and functioning and the rationale for breeding/engineering plants for increased water use efficiency, in addition to gaining the necessary understanding of the cellular and whole plant tissue basis of plant drought resistance and the physiological basis of salt tolerance.
-
Genetics
How is DNA, the fundamental building block of life, organised and expressed in different types of organisms such as bacteria and humans? Lectures comparing eukaryotic and prokaryotic gene organisation and expression, chromatin structure and DNA repair will seek to answer this question. In addition, you will study the application of genetics to science and technology during practical and workshop sessions, providing you with the opportunity to develop group and independent working skills whilst reinforcing theoretic concepts.
-
Global Change Biology: Challenges and Solutions
This module will examine how biological understanding can contribute to “global change solutions” in respect to a number of key issues, including food production, biofuels and the continuing protection of the ozone layer. However, it will also place that biological understanding in its wider context, not least by considering how the same fundamental information on specific biological approaches can lead to diametrically opposed positions on the utility and desirability of actually using the biology (e.g. the debate around GM crops).
Students will examine how different interpretations of biological technology relate to the underlying biology, and will additionally benefit from a workshop that will consider the needs of “science communication” beyond the scientific community. The module will not only provide a detailed understanding of a range of “global change solutions”, it will also consider how biology is used (and abused?) in assessing climate change and the possible responses and solutions.
Successful students will be able to describe the biology of a range of examples of both responses to global change, and possible biology-based solutions to ameliorate those responses, and recognise the wider context of the underlying biology of global change effects and/or solutions, for example in policy or the practical deployment of new technologies. Students will develop their critical skills, enabling them to evaluate the biological evidence in relation to global change effects and solutions, and assess how such evidence is used to support sometimes diametrically opposed views specific issues. This module will enhance students’ ability to write effective, concise, accurate summaries of complex biological topics in styles appropriate for different audiences, e.g. the scientific community, policy makers or the general public.
-
Host-Parasite Interactions
Plants and animals in their natural environments interact with a wide range of other living organisms. These include both beneficial interactions and damaging encounters with parasites, pathogens and herbivores. The module examines the different kinds of organisms that have evolved a parasitic lifestyle and the ways in which they parasitize their hosts. In parallel, the module will introduce the different strategies that plants and animals use to defend themselves, including the recruitment of other organisms to act as allies. The continuing conflict between hosts and parasites results in a so-called 'evolutionary arms race'.
Practical work will develop laboratory skills, and assessment will develop skills in data analysis, writing and argument. The module will also examine the evolutionary costs and benefits of defence, and the evidence for short and long-term immunological memory. Since the module is aimed primarily at addressing ecological and physiological questions rather than the biomedical aspects of parasitology, the focus will be on invertebrate rather than vertebrate hosts.
Students will be able to describe a range of subject specific topics, such as the main groups of parasitic organisms and their lifestyles; the structural and behavioural defences against parasites, pathogens and herbivores in plants and animals, and the key features of innate and adaptive immunity in plants and animals. This module will also enhance students’ ability to identify the main selective processes shaping the evolution of host resistance to parasites, along with providing explanations as to why many defence mechanisms are inducible rather than permanently expressed, and how specialist herbivores and parasites have co-evolved with their hosts to overcome resistance.
-
Issues in Conservation Biology
In this module, students will be shown how, through manipulation of species, communities and ecosystems, habitats can be managed in a sustainable way that preserves and enhances their aesthetic, scientific, recreational, and often utilitarian, value. The creation of new habitats will be considered, as well as management of existing areas of conservation interest. The module is largely taught by external lecturers who are directly involved in the application of ecological principles to practical problems.
Students will develop the level of ability required to describe the nature of selected habitat types, as well as explaining a series of underlying ecological processes which necessitate management. Students will also be able to identify the techniques used for conservation management specific to a range of habitat types, in addition to reinforcing a range of transferrable skills, such as the ability to present scientific data clearly and concisely, in both written and oral format. Students will learn to work autonomously as well as being involved in group work.
Join a discussion and debate where you are encouraged to critically examine primary literature and ideas on topical issues in conservation biology in the UK and globally. Gain an understanding of the key factors that constrain conservation and of the interdisciplinary nature of conservation problems in the real world.
-
Neurobiology
Nervous system function, from formation in the embryo to sensory systems and the neural control of complex behaviours, is the focus of this module. The emphasis is on model systems and the use of genetic tools to elucidate developmental pathways and neural circuits. Practical exercises are used to illustrate some of the functions of nervous systems and how these can be manipulated by genetic intervention.
Students are encouraged to access and evaluate information from a variety of sources and to communicate the principles in a way that is well-organised, topical, and recognises the limits of current hypotheses. On completion of the module, students will be equipped with practical techniques including data collection, analysis and interpretation.
-
Scotland Field Course
In this module, students will be shown how, through manipulation of species, communities and ecosystems, habitats can be managed in a sustainable way that preserves and enhances their aesthetic, scientific, recreational, and often utilitarian, value. The creation of new habitats will be considered, as well as management of existing areas of conservation interest. The module is largely taught by external lecturers who are directly involved in the application of ecological principles to practical problems.
Students will develop the level of ability required to describe the nature of selected habitat types, as well as explaining a series of underlying ecological processes which necessitate management. Students will also be able to identify the techniques used for conservation management specific to a range of habitat types, in addition to reinforcing a range of transferrable skills, such as the ability to present scientific data clearly and concisely, in both written and oral format. Students will learn to work autonomously as well as being involved in group work.
-
Sustainable Agriculture
Modern resource-intensive agriculture has proved incredibly successful in delivering relatively abundant, cheap food (at least in the developed world), but sometimes at considerable environmental cost. Therefore the general public is usually keen to embrace "sustainable agriculture" but is generally unaware of the economic and food production costs of proposed changes in crop management. By emphasising the concept of crop resource use efficiency, this module focuses on the viability of less intensive agricultural systems.
Students will critically examine primary literature on topical issues concerning the sustainability of different agricultural systems. They will gain an understanding of the key factors constraining food production, and the environmental and food production consequences of different crop production systems.
In addition to gaining the ability to identify key issues affecting the sustainability of agriculture, students will critically appraise the literature on these issues, and will develop the skillset required to recognise the economic and societal problems constraining the adoption of more environmentally sustainable agriculture. Ultimately, students will gain the ability to discuss alternative scenarios and solutions for key environmental problems associated with agriculture and document said issues in a cogent and critical manner.
-
Tropical Biology & Conservation
Information for this module is currently unavailable.
-
Tropical Diseases
This module is presented by academics with many years’ experience working on international tropical disease research. In the era of increasing international travel and trade, and considering the potential effects of climate change, parasites and pathogens that cause tropical diseases are an increasingly important group of organisms globally. These pathogens include viruses, bacteria, protists, worms and arthropods of various kinds.
Students will focus on the biology of the major pathogens including their life cycles, transmission mechanisms, pathology, diagnosis, treatment and control. There will be an emphasis on insect transmitted diseases such as malaria, dengue and neglected diseases such as leishmaniasis. Students will discuss international public health, and specific factors that prevent successful control within economically deprived communities.
Molecular approaches will not be covered in detail. Case study workshops will look at disease outbreaks, and practical sessions will explore and develop concepts from lectures and demonstrate some practical techniques that can be used to facilitate research into tropical diseases.
Optional
Lancaster University offers a range of programmes, some of which follow a structured study programme, and others which offer the chance for you to devise a more flexible programme. We divide academic study into two sections - Part 1 (Year 1) and Part 2 (Year 2, 3 and sometimes 4). For most programmes Part 1 requires you to study 120 credits spread over at least three modules which, depending upon your programme, will be drawn from one, two or three different academic subjects. A higher degree of specialisation then develops in subsequent years. For more information about our teaching methods at Lancaster visit our Teaching and Learning section.
Information contained on the website with respect to modules is correct at the time of publication, but changes may be necessary, for example as a result of student feedback, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes, and new research.
-
Aquatic Ecology
-
Careers
Careers
Our programmes maintain an excellent record for graduate prospects. A degree in biology opens up a wealth of opportunities in careers ranging from Environmental Microbiologist, Nature Conservation officer and School Teacher, along with academic research options, for example in soil science and crop science.
In addition to developing your knowledge in biology, a degree at Lancaster will equip you with a range of computing, intellectual, practical, numerical and interpersonal skills. The abilities gained on the programme will increase your appeal to employers in a wide variety of sectors, and our careers service offers help and advice for all of our graduates for as long you need it.
If you wish to enhance your career prospects by extending your study to postgraduate level, you may wish to undertake a PhD at our brand new Graduate School, where you can join our vibrant community of PhD students and make a direct contribution to the world-class research output, whilst developing the skills that you need to enjoy a rewarding career in your chosen field.
We offer a variety of extra-curricular activities and volunteering opportunities that enable you to explore your interests and enhance your CV. Our weekly careers bulletin and careers blogs are written by student volunteers, and inform you of careers events. The Students’ Union-run Green Lancaster programme offers placements with external organisations, allowing students to gain volunteering experience at weekends by working in the local community, taking part in a wide range of activities and developing their practical skills.
Lancaster University is dedicated to ensuring you not only gain a highly reputable degree, but that you also graduate with relevant life and work based skills. We are unique in that every student is eligible to participate in The Lancaster Award which offers you the opportunity to complete key activities such as work experience, employability/career development, campus community and social development. Visit our Employability section for full details.
-
Fees and Funding
Fees and Funding
Fees
Our annual tuition fee is set for a 12-month session, starting in the October of your year of study.
Our Undergraduate Tuition Fees for 2019/20 are:
UK/EU Overseas £9,250 £20,500 Tuition fees for programmes are set annually for all new and continuing students. If you are studying on a course of more than one year’s duration, the fees for subsequent years of your programme are likely to increase each year. Such increases are normally calculated based on increases in the costs incurred by the institution, or in relation to UK government regulations which set the maximum fee for certain categories of student.
For the majority of undergraduate students, the most recent annual increase was 2.8%. Any change in fee rates will be communicated to students and applicants prior to the start of the academic year in question, and normally at least eight months prior to enrolment. Further details can be found in our Terms and Conditions.
Channel Islands and the Isle of Man
Some science and medicine courses have higher fees for students from the Channel Islands and the Isle of Man. You can find more details here: Island Students.
Funding
For full details of the University's financial support packages including eligibility criteria, please visit our fees and funding page
Students also need to consider further costs which may include books, stationery, printing, photocopying, binding and general subsistence on trips and visits. Following graduation it may be necessary to take out subscriptions to professional bodies and to buy business attire for job interviews.
The Department
Download the latest Biosciences brochure, featuring all of the information you could need. The includes detailed course information about each of our courses.
Optional Field Courses
When you study at Lancaster, you will have the opportunity to take your studies beyond the classroom and into the field.

Doñana National Park, Spain
We visit Doñana National Park in the southwest of Spain, home to over 1,500 species of plants, over 400 species of birds and 50 species of terrestrial mammals.

Upland Ecology, Scotland
The mountains and upland areas of Scotland provide us with an opportunity to visit some of the few natural habitats left in the UK.

Tropical Biology and Conservation, Kenya
Based in the beautiful Rift Valley, Kenya, we explore the staggering biodiversity of local ecosystems, considering how best to monitor and protect them.
Liam's story
"I absolutely loved my time at Lancaster. From my very first visit to the campus, I knew that it was definitely going to be the place for me. The staff on my Biological Sciences degree have been so helpful at every step of the way and have all been fantastic. Possibly the best thing I’ve found about my lecturers is how their enthusiasm for their subjects is infectious and inspires you to want to learn more!”
Liam Fitzpatrick - BSc Hons Biological Sciences
Emma's story
"I chose Lancaster because I wanted a top university with excellent accommodation and facilities. My degree has allowed me to be involved in the fascinating research that the lecturers carry out and has equipped me for a range of careers. I have really enjoyed every aspect of university life and the course - my favourite part has been the endless opportunities which have enabled me to build up a range of experience in three years.”
Emma Huck - BSc Hons Biological Sciences
Careers
A biosciences degree from Lancaster provides you with a wide range of transferable skills which you will find to be valuable in many different career paths.

Employers
In addition to going onto postgraduate study, our recent graduates are also employed by a diverse range of organisations spanning business, industry and the public sector including the NHS, Boots, GlaxoSmithKline, Environment Agency, RSPB, Syngenta, Blackwell Scientific Publishing, United Biscuits, and Scientific Pictures Ltd.

Networking Opportunities
From question and answer panel events to careers fairs, we provide you with many opportunities to network with alumni and employers. This includes our annual STEM careers fair, attended by over 60 employers ranging from small and medium enterprises to national organisations.

Work Experience
Relevant work experience while you are at university is crucial to achieving a good graduate job. An internship will give you the opportunity to apply your academic knowledge in real-world situations whilst helping you to develop your transferable skills such as team working, time management, leadership, networking and commercial awareness – and get paid for it! This will provide you with valuable work experience and employers frequently offer graduate roles to interns.

Personal Development
We place a great deal of emphasis on developing your career aspirations and preparing you for life after Lancaster. We offer tutorials and workshops on career planning and preparation of integral parts of each degree, a range of degree-specific careers events, opportunities to plan and develop your career and practical advice from Lancaster graduates and industry experts.
Similar Courses
-
Biology and Biological Sciences
- Biological Sciences BSc Hons: C100
- Biological Sciences MSci Hons: 1M66
- Biological Sciences (Placement Year) BSc Hons: C104
- Biological Sciences (Study Abroad) BSc Hons: C102
- Biological Sciences with Biomedicine BSc Hons: C1B9
- Biological Sciences with Biomedicine (Placement Year) BSc Hons: C1B8
- Biology MSci Hons: C109
- Biology (Study Abroad) BSc Hons: C103
- Biology with Psychology BSc Hons: C1C8
- Biology with Psychology (Placement Year) BSc Hons: C1C9
- Bioscience with Entrepreneurship BSc Hons: C1N2
- Bioscience with Entrepreneurship (Placement Year) BSc Hons: C1N3
11.4 hours
Typical time in lectures, seminars and similar per week during term time
63%
Average assessment by coursework