Undergraduate open days 2024
Our summer and autumn open days will give you Lancaster University in a day. Visit campus and put yourself in the picture.
Undergraduate Open DaysApply now to make the most of your grades at a Top 10 UK university, with guaranteed accommodation in your first year.
9th for Mechanical Engineering
The Guardian University Guide (2024)
Work alongside our partners in an industry-based project
Keep your options open with our general first year
Our master's-level degree adopts a practical approach that will develop your skills and knowledge for a career involving innovation and leadership. The IMechE accreditation will qualify you as a Chartered Engineer, a professional title carrying considerable prestige with employers.
Mechanical engineering is concerned with anything that moves and many things that don’t. From a simple nut and bolt, through to the complex multi-physics of aerodynamics in Formula One, mechanical engineering solves the broadest range of challenges and leads to a multitude of different and exciting careers.
Our approach reinforces your learning from lectures through practical activities, and allows you to fully assess your assumptions while building teamwork and project management skills essential to your future career.
In the modern world, Mechanical Engineers are part of small or large teams developing complex systems. Our common first year is tailored to equip you with the required broad fundamental knowledge. You will study themes from within mechanical engineering, but also the fundamentals behind electrical, electronics and chemical processes, along with a solid foundation in engineering mathematics.
Your second year will then be spent studying at a partner university in Europe, the United States of America or Australia. This year abroad allows you to broaden your horizons, grow as a person and adds a new insight and perspective on not only the discipline of engineering, but also on the methods and structure within higher education. The marks you gain during your international year will be converted to grades at Lancaster and will count towards your final degree classification.
On return to Lancaster in year three, you will join your specialist programme of study, taking modules in your specific discipline and continuing to develop your core skills as an engineer.
Specialist modules in mechanical engineering will begin in the third year, where you will cover main themes of materials, statics and dynamics, fluids and thermodynamics, complemented by design and laboratory activities. You have the opportunity to undertake a business development project, to introduce you to Industry 4.0 concepts.
In year four, you will work on an engaging individual project shaped over your interests and ambitions. Your supervisor, a leading specialist in the subject area, will guide you to gain an in-depth knowledge of the topic for successful project completion.
Previous examples include:
You will also develop advanced skills, knowledge and experience, with a focus on leadership and management. We offer three distinctive pathways to support your career ambitions:
You will undertake a significant team-based project. The project is a culmination of the four years of studying at Lancaster and allows you to apply your specialist knowledge to an engineering challenge.
Successful projects include:
During this programme, you will also undertake two short industry linked projects, giving you the opportunity to develop your leadership, entrepreneurial and management potential.
Mechanical engineers lead the design and build of the things we use and see in our everyday lives. This dynamic discipline, which involves a high level of mathematics, physics and other STEM subjects, is applicable to a virtually limitless range of scenarios and situations. From the cars we drive to the buildings we live and work in, mechanical engineers have been involved in building our world every step of the way. You will graduate with a broad range of skills that make you highly desirable, such as the ability to think creatively, develop solutions to problems, manage projects, apply practical and technical knowledge and to be confident in decision making. It’s unsurprising then that our graduates go on to work within a wide range of sectors and industries, from Aerospace to Energy, Maritime to Rail and more. Graduates from our Engineering degrees are well-paid too, with a median starting salary of £29,000 (HESA Graduate Outcomes Survey 2023).
Here are just some of the roles that our BEng and MEng Mechanical Engineering students have progressed into upon graduating:
Lancaster University is dedicated to ensuring you not only gain a highly reputable degree, you also graduate with the relevant life and work based skills. We are unique in that every student is eligible to participate in The Lancaster Award which offers you the opportunity to complete key activities such as work experience, employability/career development, campus community and social development. Visit our Employability section for full details.
A Level AAA
Required Subjects A level Mathematics and a Physical Science, for example, Physics, Chemistry, Electronics, Computer Science, Design & Technology or Further Mathematics.
GCSE Minimum of four GCSEs at grade B or 5 to include Mathematics at grade B or 6, and GCSE English Language at grade C or 4.
IELTS 6.5 overall with at least 5.5 in each component. For other English language qualifications we accept, please see our English language requirements webpages.
Interviews Applicants may be interviewed before being made an offer.
International Baccalaureate 36 points overall with 16 points from the best 3 Higher Level subjects including either:
Acceptable physical science subjects include Physics, Chemistry, Computer Science, and Design Technology.
BTEC (Pre-2016 specifications): Distinction, Distinction, Distinction in an Engineering related subject to include Distinctions in Mathematics for Engineering Technicians and Further Mathematics for Engineering Technicians units.
BTEC (2016 specifications): Distinction, Distinction, Distinction in an Engineering related subject to include Distinctions in the following units – Unit 1 Engineering Principles, Unit 3 Engineering Product Design and Manufacture, Unit 6 Microcontroller Systems for Engineers, Unit 7 Calculus to Solve Engineering Problems. Unit 8 Further Engineering Mathematics is highly recommended.
We welcome applications from students with a range of alternative UK and international qualifications, including combinations of qualifications. Further guidance on admission to the University, including other qualifications that we accept, frequently asked questions and information on applying, can be found on our general admissions webpages.
Contact Admissions Team + 44 (0) 1524 592028 or via ugadmissions@lancaster.ac.uk
Lancaster University offers a range of programmes, some of which follow a structured study programme, and some which offer the chance for you to devise a more flexible programme to complement your main specialism.
Information contained on the website with respect to modules is correct at the time of publication, and the University will make every reasonable effort to offer modules as advertised. In some cases changes may be necessary and may result in some combinations being unavailable, for example as a result of student feedback, timetabling, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes and new research. Not all optional modules are available every year.
This module introduces fundamental applications of engineering science to build physical components, structures and systems and create functionality across all engineering disciplines. The basics of manufacturing and processes will be explored together with design principles, methods of sensing physical, electromagnetic, electrostatic and chemical effects, and converting these effects to electrical signals and mechanical actuation.
Over the course of this module, students will learn how to manipulate and manufacture objects, synthesise chemical compounds, as well as build and code electrical interfaces. At the end of the module, students will complete a group project using CAD tools to analyse, design, capture, and manufacture engineering components, sensor interfacing, data conversion and data processing.
This module introduces concepts associated with the fundamentals of engineering science relevant to chemical, mechanical, nuclear and electrical/electronic systems. Students will learn how physical principles associated with heat, energy transfer, radiation, fluid mechanics, forces, kinetics, impedance, and atomic level behaviour govern the function of structures, processes, components, devices, and systems. These principles provide a foundation for all engineering degree programmes. By the end of the module, students will be able to apply their knowledge of these principles in a practical manner to investigate real-world challenges.
This module introduces key numerical and analytical concepts relevant to the engineering disciplines providing a foundation for all engineering programmes. Students will consolidate their skills in the use of complex numbers, calculus, differential equations, vectors, matrices and transforms as engineering tools that can be applied to the analysis and design of engineered materials, components, devices, structures, assemblies and systems.
MATLAB and Excel will be introduced to both solve mathematical problems, apply mathematical principles to data sets to generate curves, statistics and trends. Students will learn basic programming in order to implement mathematical algorithms commonly used in the engineering disciplines. Supporting laboratories will involve tasks associated with the visualisation of mathematical solutions, the processing of data sets and the use of programming techniques to implement solutions on an embedded processor or personal computer.
In this year, you will study at one of our international partner universities. This will help you to develop your global outlook, expand your professional network, and gain cultural and personal skills. You will choose specialist modules relating to your degree as well as other modules from across the host university.
Introducing the metal cutting manufacturing processes, this module focuses on mechanical machining theory. It covers jigs and fixtures as well as cost estimating, computer numerical control (CNC) and ancillary equipment. Students will gain an understanding of flexible manufacturing systems (FMS) and parts classification, along with group technology.
The module will enhance students’ understanding of the process of machining, as well as the principles of work holding and fixturing. Students will prepare a process plan and will be able to estimate times for the manufacture of simple jobs.
Additionally, students will develop an understanding of the principles of CAPPE, and will set out a time estimate for a manual or robotic assembly process. They will also consider the principles of Design for Manufacture and Assembly (DFMA).
Students will give an account of the relationship between CNC, FMS and computer integrated manufacturing (CIM), including the information structures needed to achieve integration. They will also gain an understanding of key issues in modern manufacturing, especially regarding tooling and other investment hotspots. This module will allow students to appreciate current enabling technologies such as rapid prototyping and the use of in-cycle gauging and statistical process control (SPC).
This module addresses the physical behaviours of a wide range of engineering materials by considering underpinning scientific concepts affecting resistance to failure by yield, fast fracture, fatigue, creep and corrosion/environmental degradation. Through the examination of case study examples, the module will inspect the connection between materials selection, processing and environmental/service conditions. The influence these factors have upon the economic and safe use of materials, in a range of common engineering applications, will also be explored.
Students will develop the ability to describe the limitations of yield based failure criteria when determining the resistance to failure by crack initiation, growth and fast-fracture. They will apply Linear Elastic Fracture Mechanics (LEFM) concepts to the modelling of engineering components. They will gain the level of knowledge necessary to explain how fatigue testing is carried out in the laboratory, this is done whilst applying the results from such testing, to the modelling of engineering components.
The module will enhance students’ ability to describe the underpinning mechanisms that cause creep in materials. They will be able to use creep models and creep data to carry out basic calculations to predict the performance of materials under elevated temperature conditions.
Additionally, students will gain the skill set required to explain the underlying factors that affect the environmental degradation of materials, in particular those applicable to industrially significant metallic alloys. Students will reinforce their understanding of why the structural integrity of materials in engineering design, is a function of the structure-property-environment relationship. Finally, they will be able to exercise informed materials selection in engineering design.
The module involves students completing an individual project. They are responsible for the research, management and the design/practical element of the project. They will be assigned a project title and project supervisor who will guide and advise throughout the project. The module aims to give students an in-depth knowledge of a specific, specialist area of their subject. They will learn professional software, design or experimental skills consistent with subject.
Students can choose a specific area of development from a vast range of possible outcomes, and they will work towards their personal goal. Students can gain knowledge and understanding of scientific principles and methodology necessary to underpin their education in their engineering discipline, to enable appreciation of its scientific and engineering context, and to support their understanding of historical, current, and future developments and technologies.
Alternatively, students may choose to develop the ability to apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems. There will also be an opportunity for students to learn and apply quantitative methods and computer software relevant to their engineering discipline, in order to solve engineering problems. Students can also develop an understanding of customer and user needs and the importance of considerations such as aesthetics, along with workshop and laboratory skills.
This module provides fundamental understanding of the principals involved in the design and analysis of complex mechanical systems. The aim of this module is to develop students’ skills and abilities in mechanics, particularly in relation to mechanisms and linkages, balancing of rotating and reciprocating machinery and inertia forces in mechanisms. Students will gain experience in kinematics and kinetics of mechanisms, including velocity diagrams and instantaneous centres. Additionally, the module will introduce rigid body dynamics and motion described in various co-ordinate systems, along with balancing rotating and reciprocating equipment.
This module will enable students to use principles of forces and moments equilibrium (with inertia forces) to estimate the forces acting on rigid bodies that are accelerating in two dimensions. They will also use kinematic principles to relate displacements and velocities of points on linkages of rigid bodies. Additionally, the module will enhance the ability of the students to find the location of instantaneous centres in a linkage. They will then learn to apply the instantaneous centre method to investigate the velocities of points on a linkage.
Students will learn how to find the velocity of any point of selected planar mechanisms using velocity diagrams and the velocity image theorem. They will also develop the necessary knowledge to find the acceleration of any point of selected planar mechanisms using acceleration diagrams and the acceleration image theorem. Finally, students will apply the idea of energy conservation to ideal systems.
The aim of this module is to introduce students to the foundations of computational fluid dynamics (CFD), including finite difference and finite volume methods, numerical solution of partial differential equations and von Neumann stability analysis. The advanced use of CFD for solving complex fluid dynamics issues will be explored and is crucial to several engineering branches including turbomachinery, hydraulic, aeronautical, renewable energy, environmental and chemical engineering.
Knowledge of the fundamental theoretical elements of CFD provided in this module enables students to correctly set up and solve problems in the aforementioned areas using state of the art commercial CFD software. The lab based component of the module aims to provide students with advanced expertise using key components of the CFD software. These include grid generation systems, CFD solvers (including choice of key physical modelling and numerical control parameters), and solution post-processors (including flow visualisation systems).
Students are provided with an insight into the physics, chemistry and engineering of common energy conversion processes, including conventional thermal power generation: coal, oil, open-cycle and combined cycle gas turbines. They will develop the ability to analyse systems efficiency and the CO2 emissions of different schemes, and will also study direct conversion, including solar photovoltaic devices and fuel cells.
This module will enable students to discuss and deduce numerically the efficiency of a variety of energy conversion processes. There will be an opportunity for students to gain a range of transferable skills such as, the ability to describe and analyse energy conversion processes. They will also gain a consideration of where current research trends are taking the field.
Students will develop skills in analysing some commonly occurring machine elements during this module. Discovering how these devices work to support and transmit force and load, leads to better decision making in their selection and use as a machine component, either individually or as part of a more complex assembly.
Over the course of the module, students will develop the level of skill required to establish the geometry of contacts between bodies, including relative radii of curvature. They will be able to estimate stresses and loads between bodies at such contacts, and will understand how to carry out calculations on involute gear geometry. Additionally, students will learn to carry out calculations involving gear trains including efficiency and inertia considerations, and will gain the knowledge necessary to estimate the load capacity of plain (hydrodynamic) bearings. They will also develop their understanding of how loads are carried by bolted joints.
Students are provided with the opportunity to experience live projects over a significant period of time, working in multidisciplinary groups and in a team project environment. They will bring specialist knowledge from their own degree disciplines for the benefit of developing a multidisciplinary solution to the project being undertaken.
The group projects are typically developed in partnership with industry collaborators or, are based on research activity within the School of Engineering. This ensures that they are at the cutting edge of research and/or have an industrial focus.
Students will develop the ability to critically analyse and evaluate a project brief, providing input based on their individual degree specialisation such as nuclear, mechanical or mechatronics. Students will implement a project management system for documenting and tracking, the system will require the agreement of time-constrained deliverables that can be changed over time. They will also create a fully justified design brief for a product, process or service that is underpinned by specialist knowledge, and takes account of a critical engineering analysis of the topic under consideration.
Additionally, students will produce a working prototype, product or process that takes account of and incorporates subject specific knowledge and is consistent with the commercial drivers of industrial stakeholders. They will also demonstrate the ability to collect, store, analyse and recall large sets of data or results that can be interpreted by all members of the multidisciplinary group. Finally, an understanding of issues such as health and safety, risk, ethics, environment, National/European/International standards and other regulatory frameworks that are subject specific will be developed and must be adhered to.
This module aims to extend students’ experience of a range of industrially relevant computer based engineering tools including computer aided design (CAD), finite element analysis (FEA), computer aided manufacture (CAM) and product data management (PDM). With this experience, students will be able to critically analyse the tools and techniques available and competently apply them to real engineering scenarios. The impetus and development of the tools will be discussed as will their future directions. Students will gain practical experience with these tools and will be given the opportunity to apply their experience and knowledge to real world engineering problems.
The module will enhance students’ ability to critically evaluate mechanical designs using finite element analysis, and they will use their understanding of solid mechanics to devise appropriate FEA methodologies and assess the validity of their analysis. Additionally, students will create designs that can be reliably realised using computer aided manufacturing methodologies. They will also gain a comprehensive understanding of the use of product data management and be able to judge when it is to be used over alternative methods. Finally, students will develop solutions to meet real world engineering needs and will learn analysis and manufacturing strategies, all whilst making competent engineering decisions based on evidence.
For MEng Mechanical Engineering students, this module is core for those choosing to follow either the Design Pathway or the Materials and Manufacturing Pathway.
The module will familiarise students with families of advanced materials relevant to industries such as automotive, aerospace, machinery and energy. It will examine the materials science paradigm of relating product performance with materials properties, the underlying microstructure as a result of processing with a focus on advanced alloys. The shortcomings in existing families of materials will be identified, and routes for materials design will be presented.
Existing software for materials design will be presented, and it will be demonstrated how materials design plays a key role in the success of companies such as Rolls-Royce, Apple Computers and Airbus.
For MEng Mechanical Engineering students, this module is core for those choosing to follow the Materials and Manufacturing Pathway.
Introducing the concept of systems and systems design, this module addresses structured methods of functional decomposition, and provides insight into functional modelling and creative thinking tools.
Students will develop knowledge in the importance of a structured approach to system and product design, including the skills for eliciting, capturing and analysing customer requirements. The module will also introduce functional modelling methods for the analysis and synthesis of a set of requirements.
In addition, students will be able to demonstrate a theoretical understanding of a systemic approach to systems design. They will develop skills for eliciting, capturing and analysing customer requirements, and will gain a theoretical understanding of system design and how it relates to systems engineering and its principles through divergent and convergent thinking processes.
For MEng Mechanical Engineering students, this module is core for those choosing to follow either the Design Pathway or the Energy & Resources Pathway.
This module aims to familiarise students with the issues involved in starting up and running a company in a technological area, and to introduce the concept of entrepreneur as a transformational leader. Work placements will allow students to develop an appreciation of engineering problems within an industrial context.
Students will participate in a company-based problem solving or a design project, and will improve their understanding of a particular technological problem depending on the nature of their company placement. Additionally, students will gain a theoretical basis of operations management, strategy and strategic development, accounting, customer value and marketing, as well as managing human resources. The module will enhance students’ ability to carry out basic financial analysis for example, to forecast the company's future performance, and will provide them with a theoretical basis and practical experience of problem solving and teamwork. Finally, students will gain a theoretical basis and some experience of the Human Resources aspects of business.
For MEng Mechanical Engineering students, this module is core for those choosing to follow either the Design Pathway, the Energy & Resources Pathway or the Materials and Manufacturing Pathway.
This module introduces students to the design and application of intelligent control systems, with a focus on modern algorithmic, computer aided design methods. Starting from the well known, proportional integral algorithm, essential concepts such as digital and optimal control are introduced using straight forward algebra and block diagrams. The module addresses the needs of students across the engineering discipline who would like to advance their knowledge of automatic control and optimisation, with practical worked examples from robotics, industrial process control and environmental systems, among other areas.
Students will gain an understanding of various hierarchical architectures of intelligent control and will be able to analyse and design discrete time models and digital control systems. Additionally, they will gain the necessary knowledge to design optimal model based control systems and identify mathematical models from engineering data. Students will also learn how to design and evaluate system performance for practical applications.
This module provides an understanding and the skills necessary for the interfacing and integrating of complex electro-mechanical computer control systems. Students will develop an awareness of future developments in interfacing technology. Students will gain an understanding of the principles of digital and analogue interfacing, and will be able to define and interpret interfacing requirements and device specifications.
Additionally, students will gain the level of knowledge required to design appropriate interface hardware, whilst resolving issues of signal amplitude, level shifting, polarity, impedance and drive, and using passive and active circuitry. They will also experience and resolve associated problems of power supply requirements, grounding and noise, and develop an awareness of EMC issues relating to the interface and external equipment. Finally, students will observe and understand the effect of timing and sample rate on typical input/output functions and control algorithms.
This module introduces students to the recent advances in artificial intelligence, machine learning, and cutting-edge deep learning methods. Students will learn how to examine the technologies that apply to various aspects of engineering, such as searching and planning algorithms, supervised learning, unsupervised learning, reinforcement learning, deep neural networks, convolution neural networks, recurrent neural networks, and generative adversarial network.
The module aims to equip students with key knowledge and understanding of their application in industrial robots, smart manufacturing, predictive maintenance, design optimisation and digital twin. Students will also learn how to implement the machine learning algorithms by practicing this in our labs, keeping the legal, social and ethical considerations in mind when applying machine learning technologies.
On successful completion of this module, students will be able to demonstrate the impact of emerging machine learning technologies by understanding the underlying principles of machine learning, typical algorithms, and deep learning methods. Students will be able to analyse real-world problems, such as design optimisation, manufacturing process optimisation, fault diagnosis and prognosis, and be able to design machine learning models to solve them.
Students will be educated in the importance of the mechanism and mechanical design requirements for products and systems. The mechanics of robotic manipulators will be covered, as will their use in manufacturing and their programming. The module will provide an understanding of actuator operating principles and an approach to their selection.
Additionally, students will gain knowledge of the meaning and significance of factors which determine the performance and stability of machine systems, such as structural stiffness, kinematic design, parasitic effects and load diffusion. They will be able to set out the scheme design of a machine/system which incorporates principles derived from this understanding, and will become skilled in analysing the dynamics of real systems by applying appropriate approaches. These include the formulation of actuator system models, time-series analysis and frequency response analysis.
Students will also be able to calculate the geometric and kinematic performance of a robotic arm, and will work out the drive forces or torques required for given loads on a robotic arm. Finally, students will gain an understanding of the principles of actuators and will be able to select them appropriately. They will also develop an appreciation for current advances in actuator technology.
For MEng Mechanical Engineering students, this module is core for those choosing to follow the Design Pathway.
The aim is to develop students' understanding of the key aspects underlying engineering science, relating to the production of nuclear fuels and the conversion of nuclear energy. The unique hazards associated with handling the materials in the manufacturing train, such as criticality, radioactive exposure, chemical toxicity and flammability, will be highlighted together with methods for their safe management. Students will be able to study advanced material balancing methods suited to the special requirements of nuclear materials including methods of reconciliation and active material accountancy.
Additionally, students will extend their knowledge of heat transfer with particular reference to the design of nuclear reactors and the complex boiling processes occurring in theory geometries.
Ultimately, this module will provide understanding of a range of nuclear fuels, their associated manufacturing processes, and their relationship with the civil/military controversy.
This module will introduce the fundamental concepts underpinning nuclear fusion and the engineering challenges associated with its implementation as a power source. It will explore the fundamental fusion reactions and discuss the different engineering approaches to extracting useful energy from them, with a focus on magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). You will be provided with a basic grounding in electromagnetism and superconductivity to enable discussion of these confinement concepts and associated technologies, including lasers, magnets and diagnostics. Aspects of this course also aim to explore the tritium fuel cycle and materials issues unique to fusion, i.e. radiation damage, and how these are being developed with a focus on maintaining overall public acceptability. By the end of the course, you will be able to identify and critically evaluate the different approaches to exploiting fusion for electricity generation, identify and describe major systems in Magnetic Confinement Fusion (MCF) and Inertial Confinement Fusion (ICF) reactor, as well as justify the selection of materials for key reactor systems and components.
The module is taught in collaboration with the world-leading Culham Centre for Fusion Energy
Manufacturing is a key component of engineering. The ability to design and manufacture, high quality, high value products, with short lead times, is essential for industries to be competitive in the modern "digital" age. This module will introduce the context of new product introduction and examine the technologies available to both shorten total lead times and increase confidence in the product. It will study, in detail, a range of rapid product development tools and technologies including specific process principles and engineering applications. Topics covered include, Concurrent Engineering, Rapid Prototyping, Rapid Tooling, Additive Manufacturing, Reverse Engineering, Virtual Prototyping and Responsive Manufacturing.
For MEng Mechanical Engineering students, this module is core for those choosing to follow the Materials and Manufacturing Pathway.
The aim of this module is to introduce students to the fundamentals of a range of sources of renewable energy and means of its conversion into useful forms, and to highlight technical, economical, environmental and ethical issues associated with the exploitation of renewable energy sources. The module focuses particularly on most aspects of wind-, tidal- and hydro-power, but many of the discussed principles are applicable to most other renewable energy forms.
Students will be equipped with the practical knowledge of to make estimates of the energy available from a wide range of renewable energy resources at a given site, and will develop a deeper level of knowledge and understanding of wind-, tidal- and hydro-power, including the characteristics of the available energy resource, the detailed layout and functionality of the machinery required to convert the available energy resource into electricity. Students will develop an awareness of the relationship between the characteristics of the available resource and the design of the energy conversion system, and will gain a basic understanding of the energy transmission chain and the technical and economic issues associated with integrating the considered energy production systems in large power grids. Additionally, students will be able to set up advanced engineering models for the aeromechanical analysis and design of the machinery needed for the conversion of these forms of renewable energy into electricity, and will possess the basic theoretical means for performing several types of cost analysis, including the assessment of the cost of energy for the particular source required. Students will gain familiarity with fundamental computer analysis and design tools used in the modern renewable energy industry.
Our annual tuition fee is set for a 12-month session, starting in the October of your year of study.
Our Undergraduate Tuition Fees for 2024/25 are:
Home | International |
---|---|
£9,250 | £28,675 |
There may be extra costs related to your course for items such as books, stationery, printing, photocopying, binding and general subsistence on trips and visits. Following graduation, you may need to pay a subscription to a professional body for some chosen careers.
Specific additional costs for studying at Lancaster are listed below.
Lancaster is proud to be one of only a handful of UK universities to have a collegiate system. Every student belongs to a college, and all students pay a small college membership fee which supports the running of college events and activities. Students on some distance-learning courses are not liable to pay a college fee.
For students starting in 2024, the fee is £40 for undergraduates and research students and £15 for students on one-year courses. Fees for students starting in 2025 have not yet been set.
To support your studies, you will also require access to a computer, along with reliable internet access. You will be able to access a range of software and services from a Windows, Mac, Chromebook or Linux device. For certain degree programmes, you may need a specific device, or we may provide you with a laptop and appropriate software - details of which will be available on relevant programme pages. A dedicated IT support helpdesk is available in the event of any problems.
The University provides limited financial support to assist students who do not have the required IT equipment or broadband support in place.
In addition to travel and accommodation costs, while you are studying abroad, you will need to have a passport and, depending on the country, there may be other costs such as travel documents (e.g. VISA or work permit) and any tests and vaccines that are required at the time of travel. Some countries may require proof of funds.
In addition to possible commuting costs during your placement, you may need to buy clothing that is suitable for your workplace and you may have accommodation costs. Depending on the employer and your job, you may have other costs such as copies of personal documents required by your employer for example.
The fee that you pay will depend on whether you are considered to be a home or international student. Read more about how we assign your fee status.
Home fees are subject to annual review, and may be liable to rise each year in line with UK government policy. International fees (including EU) are reviewed annually and are not fixed for the duration of your studies. Read more about fees in subsequent years.
We will charge tuition fees to Home undergraduate students on full-year study abroad/work placements in line with the maximum amounts permitted by the Department for Education. The current maximum levels are:
International students on full-year study abroad/work placements will be charged the same percentages as the standard International fee.
Please note that the maximum levels chargeable in future years may be subject to changes in Government policy.
You will be automatically considered for our main scholarships and bursaries when you apply, so there's nothing extra that you need to do.
You may be eligible for the following funding opportunities, depending on your fee status:
Unfortunately no scholarships and bursaries match your selection, but there are more listed on scholarships and bursaries page.
Scheme | Based on | Amount |
---|---|---|
Based on {{item.eligibility_basis}} | Amount {{item.amount}} |
We also have other, more specialised scholarships and bursaries - such as those for students from specific countries.
Browse Lancaster University's scholarships and bursaries.
The information on this site relates primarily to 2025/2026 entry to the University and every effort has been taken to ensure the information is correct at the time of publication.
The University will use all reasonable effort to deliver the courses as described, but the University reserves the right to make changes to advertised courses. In exceptional circumstances that are beyond the University’s reasonable control (Force Majeure Events), we may need to amend the programmes and provision advertised. In this event, the University will take reasonable steps to minimise the disruption to your studies. If a course is withdrawn or if there are any fundamental changes to your course, we will give you reasonable notice and you will be entitled to request that you are considered for an alternative course or withdraw your application. You are advised to revisit our website for up-to-date course information before you submit your application.
More information on limits to the University’s liability can be found in our legal information.
We believe in the importance of a strong and productive partnership between our students and staff. In order to ensure your time at Lancaster is a positive experience we have worked with the Students’ Union to articulate this relationship and the standards to which the University and its students aspire. View our Charter and other policies.
Our summer and autumn open days will give you Lancaster University in a day. Visit campus and put yourself in the picture.
Undergraduate Open DaysTake five minutes and let us show you what Lancaster has to offer, from our beautiful green campus to our colleges, teaching and sports facilities.
Most first-year undergraduate students choose to live on campus, where you’ll find accommodation to suit different preferences and budgets.
Our historic city is student-friendly and home to a diverse and welcoming community. Beyond the city you'll find a stunning coastline and the picturesque Lake District.