Learning on Location
As a part of our Geography degrees, you will have the opportunity to conduct fieldwork in a variety of locations, both in the UK and abroad. Some of the destinations open to our students are:
We've put together information and resources to guide your application journey as a student from the United States of America.
11th for Geography and Environmental Science
The Times and Sunday Times Good University Guide (2025)
13th for Geography
The Complete University Guide (2025)
16th for Geography
The Guardian University Guide (2025)
Discover Geography at Lancaster and overseas with our exciting Study Abroad programme. Explore a range of amazing locations; study Master's-level modules; and learn from world-renowned lecturers.
Geography is a distinctive subject: it studies our world in a vast range of areas. Our Study Abroad Master's programme provides a unique first-hand experience of work and life in a different country. You will spend a year exploring the diverse physical environments, societies and culture in North America or Australasia, as well as benefiting from our world-class teaching at the state-of-the-art Lancaster Environment Centre (LEC).
While studying in the Lancaster Environment Centre (LEC), you will have access to new teaching and research labs, computer systems and software and even our very own weather monitoring station. Working in comfortable class sizes, you will have the opportunity to get to know your lecturers personally, enabling you to benefit their expert knowledge and helpful one-to-one advice.
Modules taken at Lancaster will make extensive use of the rural settings of the north and the bustling cities of Liverpool and Manchester, allowing you to explore some of the UK’s most unique areas of geographic interest. You will gain a wealth of hands-on experience with field trips to places such as the Yorkshire Dales, Cumbrian coast and Lake District, as well as international locations including Iceland, Croatia or New York.
You will develop a fundamental understanding of human, physical and environmental geography in your first year Geography modules. These first year modules equip you with a well-rounded introduction to some of the key themes of geography, as well as providing you with some of the key skills used by geographers to analyse problems in both the physical and human aspects of the discipline.
Third year modules will be taught at a partner university in North America or Australasia. You may engage in topics such as cities and globalisation, environmental change, glacial systems, coastal processes, and water management. In addition, you will gain valuable fieldwork experience in another country.
Lancaster University will make reasonable endeavours to place students at an approved overseas partner university that offers appropriate modules which contribute credit to your Lancaster degree. Occasionally places overseas may not be available for all students who want to study abroad or the place at the partner university may be withdrawn if core modules are unavailable. If you are not offered a place to study overseas, you will be able to transfer to the equivalent standard degree scheme and would complete your studies at Lancaster.
Lancaster University cannot accept responsibility for any financial aspects of the year or term abroad.
Your fourth year of study provides an advanced qualification which will give you a competitive edge in the graduate jobs market by equipping you with the extra experience, knowledge and skills that come with studying Master's-level modules and undertaking a dissertation. This will enable you to stand out from the crowd in the selection process for graduate roles.
Assessment
We offer flexible programmes with a strong emphasis on practical learning. You will engage in a wide range of modules that span the breadth of geographical topics and infuse content from the humanities, along with the social and physical sciences. Your work will be regularly assessed by a combination of assignments, written examinations and project reports.
This programme has been accredited by the Royal Geographical Society (with IBG). Accreditation recognises programmes that deliver the geographical knowledge, understanding, skills, approaches and professional attributes expected of high-quality geography graduates, as recorded in the QAA Subject Benchmark Statement for Geography.
Learn more about the Royal Geographical Society accreditationGeography helps us to understand the world around us, from the study of cultures and people, to the processes going on beneath our feet that shape the landscapes we live in. A degree in geography will help you get to grips with the many challenges we face with a growing population and an increasingly precarious climate situation by providing you with the opportunity to tackle a wide variety of complex issues. With such a diverse curriculum of topics, our geography graduates go on to work in a diverse range of positions such as Planning Officers, Environmental Consultants, Landscape Architects, Geospatial Analyst, Hydrologist, Emergency Planning and many more. Geographers are also well placed to secure roles and opportunities in sectors that might not be obvious such as marketing and sales, teaching, travel and tourism, and commercial business. This is down to your transferable skills in communication, software competencies, project management and data analysis. Graduates from our courses are also well-paid, with the median starting salary of graduates from Lancaster Environment Centre being £24,347 (HESA Graduate Outcomes Survey 2023).
Here are just some of the roles that our BSc and MSci Geography students have progressed into upon graduating:
Lancaster University is dedicated to ensuring you not only gain a highly reputable degree, you also graduate with the relevant life and work based skills. We are unique in that every student is eligible to participate in The Lancaster Award which offers you the opportunity to complete key activities such as work experience, employability/career development, campus community and social development. Visit our Employability section for full details.
A Level AAB
Required Subjects A level Geography is recommended, or alternatively one of the following subjects: Anthropology, Biology, Chemistry, Classics, Economics, English Literature, Environmental Studies, Geology, History, Mathematics, Philosophy, Physics, Psychology, Religious Studies, Sociology, World Development.
GCSE Mathematics grade C or 4, English Language grade C or 4
IELTS 6.5 overall with at least 5.5 in each component. For other English language qualifications we accept, please see our English language requirements webpages.
International Baccalaureate 35 points overall with 16 points from the best 3 Higher Level subjects including Geography or alternative cognate subject at HL grade 6
BTEC Distinction, Distinction, Distinction in a related subject but may additionally require a supporting A level in Geography or alternative cognate subject at grade B. Please contact the Admissions Team for further advice.
We welcome applications from students with a range of alternative UK and international qualifications, including combinations of qualification. Further guidance on admission to the University, including other qualifications that we accept, frequently asked questions and information on applying, can be found on our general admissions webpages.
Contact Admissions Team + 44 (0) 1524 592028 or via ugadmissions@lancaster.ac.uk
Delivered in partnership with INTO Lancaster University, our one-year tailored foundation pathways are designed to improve your subject knowledge and English language skills to the level required by a range of Lancaster University degrees. Visit the INTO Lancaster University website for more details and a list of eligible degrees you can progress onto.
Contextual admissions could help you gain a place at university if you have faced additional challenges during your education which might have impacted your results. Visit our contextual admissions page to find out about how this works and whether you could be eligible.
Lancaster University offers a range of programmes, some of which follow a structured study programme, and some which offer the chance for you to devise a more flexible programme to complement your main specialism.
Information contained on the website with respect to modules is correct at the time of publication, and the University will make every reasonable effort to offer modules as advertised. In some cases changes may be necessary and may result in some combinations being unavailable, for example as a result of student feedback, timetabling, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes and new research. Not all optional modules are available every year.
This module provides an introduction to environmental processes and their impacts in a variety of different environments. We discuss the physical processes governing the Earth's global climate system and their influence on recent and future patterns of climate and environmental change. We investigate the Earth’s surface materials and the laws that govern the behaviour of fluids, and how these affect environmental flow and fluid transport processes. We also explore the processes which influence the development of soils and associated ecosystems at the land surface, including deposition and erosion processes.
This module provides an introduction to the skills used by geographers to analyse problems in both human and physical geography. The module begins by reviewing the principles of cartography and recent developments in the electronic delivery of map-based information through mobile devices and web-based services. This is followed by an introduction to Geographic Information Systems (GIS) which provide facilities for the capture, storage, analysis and display of spatially-referenced information. Later in the module we introduce remote sensing and explain its relationship to GIS. We also consider quantitative and qualitative techniques of analysis (which are taught within the context of contemporary conceptual approaches), with emphasis placed on the study of both environmental and societal processes.
The global environment and human society are now threatened by unprecedented changes resulting from human activities such as intensive agriculture and fossil fuel combustion, as well as facing natural hazards like volcanic eruptions and climatic extremes. This module introduces you to the major contemporary environmental issues and the complexities associated with researching, explaining and managing the Earth's environment. It provides a broad foundation in the skills required to contribute to future understanding and management of global environmental challenges. You will gain a clearer understanding of the connections between social, environmental and biotic processes and explore possible solutions for key environmental issues.
Introducing you to contemporary human geography, this module focuses on the interactions between society and space, and between people and places at a variety of spatial scales and in different parts of the globe. We introduce the key processes driving geographical change affecting society, economies, the environment, and culture. We critically analyse relevant issues using theoretical models, with examples from across the world. The module encourages you to think critically, argue coherently, appraise published material, and relate real world issues to relevant theoretical frameworks.
Introducing the nature of biological diversity and the patterns of distribution of organisms on global, regional and ecosystem scales, students discover the underlying causes of the observed biodiversity patterns and the main current threat to biodiversity. The reasons why species become extinct is explored and then the reasons why species should be preserved. Students will be able to outline the criteria that can be used to identify species and areas of high conservation importance.
Fieldtrips take place on campus, where students will look at sampling techniques and biodiversity, and to sites of special conservation interest in the Arnside and Silverdale AONB. There will also be an excursion to Blackpool Zoo.
Billions of people are at risk from natural hazards, and the cost of natural disasters to the global economy is steadily increasing. This module examines the distribution of, and hazards associated with, volcanic eruptions, earthquakes, tsunamis, hurricanes, tornadoes and floods. The underlying geological and meteorological processes are described, along with the most commonly-used intensity scales and monitoring and forecasting methods. Students will then consider how human vulnerability to these hazards can be reduced, drawing upon risk mitigation case studies from around the world.
In the practicals, students will apply simple equations and measurements from a variety of maps and graphs to understand and quantify concepts such as scale, speed and intensity of hazardous phenomena. They will be taught to contour spatial data by hand, and interpret the deformation of a volcano in terms of magma chamber depth. Students will learn about disaster preparedness through playing a team-based game, and will consider a wide range of potential careers in which knowledge of natural hazards can be applied.
The coursework will develop students’ scientific writing skills and ability to integrate their own figures and interpretations with information derived from their background reading.
More data has been generated in the last 2 years than over whole history of humanity prior to this. Of this data, 80% has spatial content. This module is about understanding properties of spatial data, whether derived from the map, an archive or the field or from space. The module will explore how these data are represented in computer systems and how, through spatial integration, new forms of information may be derived. There will be a focus on major sources of spatial data (topographic, environmental, and socio-economic) and their properties, major forms of analyses based on spatial relationships, and on effective communication of spatial data through adherence to principles of map design.
Students will develop an understanding of what makes spatial data special; this will be taught through exposure to data from a variety of primary, secondary, contemporary and historic data across the breadth of the geographic discipline. The module will introduce common forms of spatial analysis and will provide an understanding of which to use under given the situations. Students will learn the principles of map design and effective cartographic communication, as well as gaining practical experience of critiquing digital outputs. Finally, the module will offer students significant 'hands-on' experience of using state-of-the-art GIS software to capture, integrate, analyse and present geographic information.
This module provides a deeper understanding of atmospheric physics and chemistry, and begins by laying the foundations with the physical properties of the atmosphere and how they affect the movement of air. A major objective is to bring familiarity with meteorological analyses and forecasts. The module covers topics varying from small scale flow in the atmospheric boundary layer affecting pollutant transport to global scale circulation of the atmosphere including important phenomena such as monsoons and El Niño.
Practical sessions and a field trip to the Hazelrigg meteorological station will enable students to gain familiarity with mid-latitude synoptic systems, cyclones and fronts. This is built on by giving students sufficient knowledge about the chemical composition of the Earth's atmosphere, of the fluxes of C, S and N to and from the atmosphere and of the main chemical processes that occur in the atmosphere to allow them to understand how the Earth's atmosphere 'works' chemically within the framework of physical process already covered.
Successful completion of this module will show evidence of students’ ability to describe the structure and behaviour of the atmosphere with reference to meteorological observations and pathways of atmospheric transport from analysis of meteorological charts, in addition to the range of skills required to draw schematic diagrams of the general tropospheric circulation, whilst identifying the major processes (and underlying forces) that drive this circulation. Students will gain knowledge of the methods necessary to calculate atmospheric quantities, such as potential temperature, and use the results of these calculations to describe the state of the atmosphere. Students will also be equipped with the level of understanding needed to list the components of the unpolluted troposphere, including the trace gases of chemical significance, and draw annotated schematic diagrams of the atmospheric cycles of carbon, nitrogen, and sulphur.
The module aims to introduce concepts, plus measurement and analytical techniques used by professional hydrologists to solve water-related problems in catchments (notably flood forecasting and water quality remediation). Through a series of lectures and workshops, students can expect to study topics including the processes, measurement and analysis of rainfall, evapotranspiration and water quality measurement and treatment.
The module aims to develop higher level scientific skills in measuring the natural environment, quantifying dynamic processes numerically and digesting scientific literature. Students will gain the skillset required to describe catchment hydrological processes in a quantitative manner, therefore utilising a developed understanding of fundamental hydrological processes, their field measurement ('hydrometry') and basic aspects of dynamic catchment modelling. Additionally, students will gain a range of transferrable academic skills, such as the ability to use data and basic models to derive solutions, and applying subject-specific literature to help understand theory and limitations of theory, measurements and models.
The relation between theories and practices of development will be explored in the module, as well as how these have changed over time. This evolution will be placed within the context of wider changes in global political economy. The ways in which development interventions have been contested on the ground while the concept of development has been subject to challenge intellectually will also be explored.
This module will explain the different approaches towards addressing development issues and the divergent understandings of the means and goals of development that these reflect. The way in which particular places can or cannot be placed into a geographical categories such as ‘developed countries’ or ‘Global South’ will be discussed.
Students will learn about some key challenges (e.g., poverty, inequality, environmental change) commonly defined as ‘development’ issues, and the ways in which ‘development’ initiatives seek to address these problems. They shall then critically evaluate the differential impacts (e.g., along gender lines, or rural vs. urban areas) these initiatives may have. Finally, they will build on their fieldwork experience by designing a field trip on a similar theme to a new location.
The provisioning of affordable, low carbon and secure energy is a central challenge for the UK Government. This module provides an overview of energy technologies and the energy system within the UK. Students will focus on each of the key energy technologies learning how to detail its importance, its forms and uses, how much is produced, and its cost and environmental impact. Relevant policies and its current role in the energy mix will be outlined while energy distribution networks, overall policy drivers and future energy mixes will also be explored.
This module will equip the students with an understanding of the economic, political, technological, resource and environmental factors that affect decision making, which while specific to energy are applicable to the provisioning of other resources. It will offer the opportunity to think broadly across UK energy provisions and options for the future. The students will also get the chance to build on their numerical skills and understanding of energy units. They will also critically evaluate the importance of competing factors and summarise a complex concept in an easy to interpret infographic format.
Evolution is the fundamental concept in biology and an understanding of its processes and effects are important for biologists in all disciplines. The module aims to show how the morphology and behaviour of animals and plants is adapted to their environment through interactions with their own and other species, including competitors, parasites, predators and prey, and relatives. Students will explore the concept of adaptation to natural and sexual selection pressures at the level of the individual and the effects on the wider population.
Students will gain the ability to describe the roles that variation, heritability and selection play in the evolutionary process, along with a developed understanding of how numerical changes in population occur, and enhanced knowledge of how to analyse such shifts in order to make predictions about future changes. This module will also reinforce students’ understanding of the application of theoretical models, the changing effects of costs and behaviours due to circumstance, and how conflicts of interest might influence the reproductive success of individuals.
Students taking this module will gain a range of transferable skills including: report writing, data analysis and presentation, team working, verbal presentation, summarising technical texts and design of scientific enquiries.
A record of Earth’s geological history – its metamorphic, igneous, sedimentary and tectonic processes, and its surface paleogeography and climate – can be extracted from the analysis and interpretation of its rocks, minerals and fossils. Expanding on an earlier module in geology, this module examines such processes and products (rocks), focusing on how to interpret the geological history from the rock record. This is a strongly practical-based course, designed to provide students with key geologic skills required to interpret the rock record. Students will develop skills in the identification of minerals in thin section, identification of rocks and fossils in hand specimen, geologic map interpretation, use of topographic and geologic maps and field note books, field sketches, compass clinometers and stratigraphic logging, in addition to a range of skills in synthesising data in order to produce overall interpretations.
Students will gain the necessary skills required to describe and classify rocks in a specimen, and identify minerals in thin section. Students will develop a working understanding of how rocks are dated, and will utilise stereonets to extract sedimentological and structural data. Additionally, students will be able to interpret geologic maps, including sedimentological and structural data, and will determine past sedimentary, igneous and metamorphic environments of formation and the processes by which deformation and exhumation occur, along with developing the ability to apply Earth science field techniques in order to unravel the geologic history of an area.
This course provides an advanced overview of the processes that determine the nature of the Earth's surface features. It will introduce you to glaciology, hydrology, hillslope processes, Aeolian activity, and the impact that these have on both the Earth's surface and on the sediments beneath. The aim is to help you develop a clear and detailed understanding of physical geography and to provide a firm foundation for developing deeper insights through specialisation into different elements of the subject in your third year.
Eco-innovation, being the development of new products, processes or services that support business growth with a positive environmental impact, is one of the key enabling instruments identified by the European Union for the transition to a more resource efficient economy. It is embedded in the Europe 2020 strategy for supporting sustainable growth. This module will provide several case studies which outline the way in which businesses have applied eco-innovation in practice Students will gain knowledge of the key approaches to, and models of, eco-innovation in a range of business and policy contexts in addition to a reinforced understanding of how innovative ideas can be turned into practical solutions for complex socio-environmental problems, and how different business models and financing approaches can be used to make the solution commercially viable and potentially profitable.
Students will gain knowledge of eco-innovation and understand how the concept relates to business opportunities for environmental goods and services. In addition, students will gain the knowledge and skillset required to analyse how both small businesses and large global organisations apply eco-innovation into their business planning, whilst
Evaluating business opportunities related to the environment in the context of products and services to address flooding or other complex problems. Students will learn how to create proposals for eco-innovation, and prepare presentations for a panel of experts, and will develop the necessary level of understanding required to analyse technical, financial, and environmental information from a wide range of sources in order to comprehend and evaluate strategies to address complex environment-society problems and challenges.
Oceans are central to people’s cultures and identities, generate significant wealth, and are vital to securing food. However, the oceans, and the associated benefits, are increasingly under threat from human impacts. This module will examine the various relationships that people have developed with the marine environment, the threats facing these environments, and the policy narratives that have emerged.
Through a series of lectures that feed into seminars, students will learn about a range of topics that have informed ocean policy narratives. By digging deeper into the foundations of environmental thinking about the relationship between people and the sea, students will recognise the contribution oceans make to society and analyse contemporary grand challenges (e.g. climate change, food security, cultural integrity).
Students who demonstrate active engagement with the subject matter will develop a broad understanding of the diverse relationships people form with the sea. This would include an appreciation of the fact that the ocean provides a range of values and benefits to different people, and an insight into the threats and policies facing ocean ecosystems, fisheries, and coastal communities.
With this knowledge, students shall contrast two or more perspectives on ocean governance and coherently argue and defend the merits of a chosen perspective. To this end, they will present an articulate and coherent argument that synthesizes diverse sources of information in support for, or against, a particular narrative.
The contemporary world is full of intriguing political developments. Examples range from questions of national independence in the UK, through geopolitical concern with nuclear arms development, to humanitarian crises brought on by civil war. These political moments and their historical trajectories are united by an engagement with space and power; two themes that largely frame what might be called political geography. Against this background, this course examines the importance of politics to human geography and, indeed, geography to the study of politics. A range of classic ‘staples’ of political geography will be explored including engagements with geopolitics, nationalism and border studies. Additionally, we examine social movement activism and mobilisation, security and what it means to be a ‘superpower’. In all cases, theoretical grounding in these core themes will support empirical engagement with a range of case studies, both historical and contemporary.
Recent emphasis on global change and biodiversity has raised awareness of the importance of species and their interactions in determining how sustainable our lifestyle is. This module explores the factors that drive population and community dynamics, with a strong focus on multi-trophic interactions and terrestrial ecosystems.
Students will be introduced to population ecology and will discover the abiotic factors that regulate populations, life history strategies of populations, competitive interactions within populations, and meta-population dynamics, in addition to an understanding of how species interact both within and across trophic levels. The module exposes students to the belowground system and will look at how the species interactions and soil communities discussed impact on community structure and dynamics. The module aims to give students a fundamental understanding of ecology - such knowledge is essential for informing conservation and sustainable land-use practices, and efforts to mitigate climate change.
In order to complete this module, students will develop the ability to outline the primary factors that drive population dynamics, whilst critically discussing examples, and will reinforce their understanding of the implications of species interactions for community dynamics. Students will also gain a critical awareness of biotic responses and their contribution to climate change.
This module aims to provide students with broad understanding of the discipline of conservation biology. The module starts by defining biodiversity, discussing its distribution in space and time, and its value to humankind, before examining the key anthropogenic threats driving recent enhanced rates of biodiversity loss. The module then focuses on the challenges for conservation of biodiversity at several levels of the biological hierarchy: genes, species, communities and ecosystems, and the techniques used by conservationists at these levels. The final part of the module looks at the practice of conservation through discussion of prioritisation, reserve design and national and international conservation policy and regulation.
Students will develop a range of skills including the ability to discuss the principle threats to global biodiversity and the rationale for biodiversity conservation, in addition to application of a range of metrics to quantify biodiversity. Students will gain a critical understanding of the various approaches to conserving genetic, species and ecosystem diversity, as well as an enhanced knowledge of quantification of popularisation approaches to prioritisation of conservation goals, and how nature reserves can be designed to improve conservation potential.
This module aims to introduce and demonstrate the nature and properties of soils in an environmental context. It will provide an introduction to soil formation, soil description (including field work), chemical and physical properties, and biology, which will lead to the application of soil science to a variety of practical problems. This module gives exciting grounding in the nature and importance of soils in context with wider environmental issues. As well as detailed knowledge of fine scale soil processes, students will learn interdisciplinary thinking that helps them connect different and complex strands of knowledge from around the earth system.
Students will be able to describe the nature and roles of soils in the environment, and will gain the level of understanding required to describe the nature and role of soils in the environment. Successful students will be able to give a basic account of soil chemical and physical properties, as well as soil biology, and will develop the ability to discuss applied aspects of soils, specifically nutrient recycling and carbon storage.
In this year, you will study at one of our international partner universities. This will help you to develop your global outlook, expand your professional network, and gain cultural and personal skills. You will choose specialist modules relating to your degree as well as other modules from across the host university.
This module will build on the third year project to enhance student independence and provide greater experience of the research environment. The aim is for students to conduct an extensive research project in one focused area of science aligned with the research interests of the Lancaster Environment Centre.
Students may choose one of these topics in consultation with the module convenor and potential supervisor, or suggest their own topic to potential supervisors for consideration.
As part of the dissertation process, students will formulate a relevant hypothesis; design suitable experimental or other appropriate means of testing that hypothesis; and evaluate the data arising from such tests. Then they will critically review the investigative technique they have adopted and the results it obtained, and justify the conclusions arising from their investigation in a concise and constrained style.
*Please note this module will not run in 2022/23*
Catchments are increasingly perceived as complex and highly interconnected systems. This presents significant difficulties for those who manage catchments, but also a range of novel and timely research opportunities. In this context, the module aims to provide you with understanding and practical experience of key research and management challenges facing the future management of catchments. The module will take the Eden catchment as a case study, and draw on the latest land and water management framework, derived from the Water Framework Directive, as a basis for discussion. After analysing this framework and identifying significant challenges, you will use a combination of field, laboratory and data analysis techniques to investigate research questions related to biophysical processes within catchments. These investigations will lead to an appreciation of the limits to current knowledge and the opportunities for future research.
This module aims to explore and reconfigure the ways in which climate change is understood through a focus on the social, rather than the scientific-environmental discourses that have dominated the policy and politics of climate change. This module give you a wide-ranging and intensive introduction to the politics, cultures and theories of climate change research in the social sciences and humanities. You will be able to critically evaluate different theoretical perspectives on a range of climate change debates and present alternative arguments.
This module consists of a full course in statistics and data analysis from a non-mathematical viewpoint. It covers both parametric and non-parametric methods, up to and including generalised linear models. Other topics include data types, graphs, statistics, estimation and testing, categorical and continuous responses, and sampling strategies and designs of experiments.
After taking this module, students will be able to design a sensible experiment or sampling scheme and perform exploratory analysis. They will be able to decide on sensible statistical analysis, including a choice between parametric and non-parametric testing, if relevant, and perform that analysis in SPSS followed by interpretation of the results. They should also be able to realise when the analysis that they need to perform is beyond the materials covered in the module and that they should therefore consult a statistician.
This module focuses on data processing and visualisation to support dissertation work, and will provide students with advanced scientific numeracy skills. It includes introductory elements of MATLAB and Simulink, the industry standard for programming language, and students will learn to design, modify, run and debug simple MATLAB programs. They will be able to adapt the skills learnt to other programming languages such as Fortran and C.
Students will be taught the main programming elements, such as data input, processing, output in numerical and graphical forms, programming tools and structures (loops, conditional statements and other flow control).The module also introduces selected principles of dynamic systems analysis such as transfer functions applied to environmental systems in the form of examples and case studies.
Coursework will include writing brief MATLAB scripts based on the scripts used during workshops, as well as an essay on selected problems of environmental systems modelling linked with these scripts. Tests will be taken which will involve writing code snippets related to simple numerical and graphical problems.
Current approaches to cutting-edge research in the environmental sciences are highly dependent on digital data, and a wide variety of different data types can now be accessed relatively easily. You only need to consider the data required to understand climate change to appreciate the diversity of information that is currently available, and which is needed to address the biggest global issues.
In this module you will learn the fundamentals of retrieving, annotating, analysing and interpreting digital data from a variety of sources, applying integrated, scientific methodologies. You will develop data manipulation skills and an awareness of the tools available to maximise the value of heterogeneous digital data. We demonstrate everyday problems in data collection, both avoidable and unavoidable, and explore techniques that minimise their impact. We discuss the strengths and weaknesses of current software for data mining and visualisation, and you will get hands-on experience of data integration using spreadsheet, database and GIS technologies.
This module covers the possible positive and negative effects that various forms of renewable energy have on the environment. You will develop a critical understanding of the key concepts of renewable energy, and the tools and techniques for assessing the environmental impact of renewable energy schemes. In particular, you will be able to assess the challenges facing the development and deployment of large renewable energy schemes and the uncertainties related to their environmental impact.
Students will gain a critical understanding of key concepts, principles, tools and techniques for the management of natural resources and the environment. Particular attention is given to the challenges of dealing with complexity, change, uncertainty and conflict in the environment, and to the different management approaches which can be deployed in ‘turbulent’ conditions.
Contemporary environmental problems will be examined and interpreted from both an academic and policy perspective. In order to do this effectively, students will learn to evaluate and critique arguments and evidence related to environmental problems, and will demonstrate advanced understanding of alternative management concepts through constructive debate.
The focus is to understand the component parts and the interdisciplinary basis of the global food system. To this end, students will examine challenges facing global agricultural production as a result of climate change. They will also gain an understanding of the shortage of key resources for food production and the subsequent issues that affect people’s access to food.
In addition to this, the module will demonstrate how basic plant physiology can inform both plant breeding and agronomy to increase the sustainability of agriculture. The factors impacting food safety and food quality (especially nutritive value) will also be explored.
Ultimately, students will develop a familiarity with several current/impending crises in global food security.
This module introduces students to the fundamental principles of Geographical Information Systems (GIS) and Remote Sensing (RS) and shows how these complementary technologies may be used to capture/derive, manipulate, integrate, analyse and display different forms of spatially-referenced environmental data. The module is highly vocational with theory-based lectures complemented by hands-on practical sessions using state-of-the-art software (ArcGIS & ERDAS Imagine).
In addition to the subject-specific aims, the module provides students with a range of generic skills to synthesise geographical data, develop suitable approaches to problem-solving, undertake independent learning (including time management) and present the results of the analysis in novel graphical formats.
Taking a broad look at geological hazards, this module will cover everything from contemporary events to those that have shaped the Earth over geological time. The module explores in depth the fundamental processes involved in these events and how and to what extent such events can be predicted. Case histories of national and international disasters will be used to illustrate these hazards, and the inherent risks and potential mitigation measures will be discussed.
A demonstration and elaboration of the geological processes responsible for the occurrence, recurrence and magnitude of hazards will be given. Students will also learn to apply and report on the methods of prediction and mitigation strategies of geological hazards, and will apply simple prediction scenarios of geological hazard occurrence using geological datasets.To this end, students will develop skills in integrating sparse quantitative measurements and qualitative observations in order to derive interpretations from relevant datasets.
The module underscores far-reaching concepts such as using the past to inform the future and environmental risk. It will ultimately develop a sense of human-place in the geological world, promoting an understanding of how the geological world impacts human society, and what can be done to limit that impact.
The aim of this module is to introduce the concept of the Earth system and how the different components (atmosphere, ocean, ice and ecosystems) all interact with each other to shape the Earth's climate and control how the climate might change. The module will cover issues related to recent climate change, including natural and human drivers of the change. It will introduce the computer models and global observation networks that scientists use to understand the Earth system. It will also discuss the role of atmospheric chemistry and climate in the Earth system, including issues related to air quality, greenhouse gases and aerosols.
Overall, this module aims to provide an introduction to the physical processes which influence global climate change, leading to a better understanding of Earth system science.
Students will cultivate an appreciation of the scale and variety of groundwater resources within the UK and overseas. The vulnerability of these resources and the various procedures and challenges for the implementation of policies for their protection will also be a major focus during this module.
The module will introduce the principles of groundwater flow and transport for which both physical and mathematical aspects of groundwater systems need to be discussed. Use will be made of computer models to solve practical problems relevant to the water industry. The students will also gain hands-on experience of groundwater investigation methods in the field.
Those who take this module will learn to apply a specific groundwater model (MODFLOW) to a number of problems, after considering the different methods that are widely used for investigating groundwater systems. Students will then learn to state the limitations of such models for practical use and will numerically evaluate the model results that they gather.
This module will ultimately impart the skills needed to prepare reports for a Head of Section as if working for an organisation such as the Environment Agency.
Students will be given an introduction to the foundations of lake ecology, an area with an acknowledged national lack of expertise. The module presents a holistic approach to the drivers and internal interactions that control water quality in lakes.
Those who take this module will be taught basic ecological principles, which will be elucidated using lake ecology. They will also be introduced to the various applications of state-of-the-art techniques and provided with essential background information for dealing with regulation such as the Water Framework Directive.
This module also includes a field trip and practicals that will give students experience of working with the Centre for Ecology & Hydrology in a management/policy context. Modelling to predict impact of management measures is also an important aspect of the module, and an appreciation of its principles and uses when it comes to lakes and catchment will be encouraged.
Students will come to understand the state-of-the-art tools and approaches needed to study and manage lakes as used in industry, government and science.
This module provides an introduction to basic principles and approaches to computer-aided modelling of environmental processes with applications to real environmental problems such as catchment modelling, pollutant dispersal in rivers and estuaries and population dynamics. Emphasis is placed on the use of computer-based methods and practical examples and you will be introduced to general aspects of environmental systems modelling.
Having a basic level of numerical skill is required in order to perform well in many LEC PGT modules. This module provides baseline numerical, statistical and mathematical skills to underpin academic modules and as an employability skill in its own right.
This module has no credits and no formal assessment. It is taught online and students work through at their own pace.
The aim of this module is to provide students with a theoretical foundation for the study of development and the environment from a geographical perspective. Students will focus on understanding the ways in which scholars have brought together development theory alongside the analysis of nature-society relations in the developing world.
This module provides students with a critical understanding of the evolution of contemporary development discourses and new ways of thinking about the relationship between environment and development. Key topics of discussion include theories of development, indigenous knowledge and development, biotechnology and food security, and the political economy of natural resources.
Ultimately, this module will enhance student’s academic skills to develop reasoned arguments through the analysis, interpretation and critical appraisal of complex evidence, with a module designed to deepen student’s understanding between theory and practice.
This module aims to provide you with knowledge of volcanoes and volcanic systems. Its foundations are an understanding of the properties and behaviour of volcanic materials gained through laboratory, theoretical and field study. The module emphasizes the widely-applicable physical and chemical processes that occur during volcanic activity, including variations in solubility, rheology, phase, density and permeability. The interaction of volcanic processes with the biosphere, atmosphere and hydrosphere are discussed. The products of volcanism, together with the hazard and benefits to life on Earth are studied.
Students will consider four inter-related, important factors (soil water, nutrients, physics and biology) that determines a soil’s ability to produce crops, and the agricultural/economic consequences of failing to manage this resource properly. Most agricultural production is dependent on the soil not only to anchor plants, but to supply their hydraulic and nutritional needs. This module will teach students a range of management approaches that contribute to the long-term ability of the soil to sustain agricultural production. They will learn to compare and contrast soil carbon stocks in agricultural/non-agricultural land and to evaluate methods used to raise soil carbon status.
From this, students will learn to recognise effective soil and plant-based crop nutrient management. They will also be able to evaluate the impacts of plant-microbe interactions on crop disease and nutrient status, and appraise the impact of soil erosion on water body pollution.
Please note, if taking the Food Security pathway this is a core module.
This module will allow you to improve your practical and theoretical knowledge of volcanic processes through a residential field course held on an active basaltic volcano. We start off with classroom sessions to introduce the field site and provide insight into some of the magmatic and tectonic processes involved. Then, in the field, you will visit key localities and unravel the complex links between magma properties and eruptive style. We will examine effusive (lavas) and explosive (tephra) products, and will discuss and observe the roles of dykes, fissures and conduits at first hand. The module is usually held on Mount Etna, Sicily, although the location may change in future years.
Our annual tuition fee is set for a 12-month session, starting in the October of your year of study.
Our Undergraduate Tuition Fees for 2025/26 are:
Home | International |
---|---|
£9,535 | £29,820 |
Some optional modules require students to carry out fieldwork that, depending on the location and type of fieldwork, may require wet weather clothing, boots and waterproof notebooks, for which the estimated cost is approximately £110. The course offers optional residential field trip modules and students choosing to take these will have to pay towards their travel and accommodation costs.
There may be extra costs related to your course for items such as books, stationery, printing, photocopying, binding and general subsistence on trips and visits. Following graduation, you may need to pay a subscription to a professional body for some chosen careers.
Specific additional costs for studying at Lancaster are listed below.
Lancaster is proud to be one of only a handful of UK universities to have a collegiate system. Every student belongs to a college, and all students pay a small college membership fee which supports the running of college events and activities. Students on some distance-learning courses are not liable to pay a college fee.
For students starting in 2025, the fee is £40 for undergraduates and research students and £15 for students on one-year courses.
To support your studies, you will also require access to a computer, along with reliable internet access. You will be able to access a range of software and services from a Windows, Mac, Chromebook or Linux device. For certain degree programmes, you may need a specific device, or we may provide you with a laptop and appropriate software - details of which will be available on relevant programme pages. A dedicated IT support helpdesk is available in the event of any problems.
The University provides limited financial support to assist students who do not have the required IT equipment or broadband support in place.
In addition to travel and accommodation costs, while you are studying abroad, you will need to have a passport and, depending on the country, there may be other costs such as travel documents (e.g. VISA or work permit) and any tests and vaccines that are required at the time of travel. Some countries may require proof of funds.
In addition to possible commuting costs during your placement, you may need to buy clothing that is suitable for your workplace and you may have accommodation costs. Depending on the employer and your job, you may have other costs such as copies of personal documents required by your employer for example.
The fee that you pay will depend on whether you are considered to be a home or international student. Read more about how we assign your fee status.
Home fees are subject to annual review, and may be liable to rise each year in line with UK government policy. International fees (including EU) are reviewed annually and are not fixed for the duration of your studies. Read more about fees in subsequent years.
We will charge tuition fees to Home undergraduate students on full-year study abroad/work placements in line with the maximum amounts permitted by the Department for Education. The current maximum levels are:
International students on full-year study abroad/work placements will be charged the same percentages as the standard International fee.
Please note that the maximum levels chargeable in future years may be subject to changes in Government policy.
You will be automatically considered for our main scholarships and bursaries when you apply, so there's nothing extra that you need to do.
You may be eligible for the following funding opportunities, depending on your fee status:
Unfortunately no scholarships and bursaries match your selection, but there are more listed on scholarships and bursaries page.
Scheme | Based on | Amount |
---|---|---|
Based on {{item.eligibility_basis}} | Amount {{item.amount}} |
We also have other, more specialised scholarships and bursaries - such as those for students from specific countries.
Browse Lancaster University's scholarships and bursaries.
The information on this site relates primarily to 2025/2026 entry to the University and every effort has been taken to ensure the information is correct at the time of publication.
The University will use all reasonable effort to deliver the courses as described, but the University reserves the right to make changes to advertised courses. In exceptional circumstances that are beyond the University’s reasonable control (Force Majeure Events), we may need to amend the programmes and provision advertised. In this event, the University will take reasonable steps to minimise the disruption to your studies. If a course is withdrawn or if there are any fundamental changes to your course, we will give you reasonable notice and you will be entitled to request that you are considered for an alternative course or withdraw your application. You are advised to revisit our website for up-to-date course information before you submit your application.
More information on limits to the University’s liability can be found in our legal information.
We believe in the importance of a strong and productive partnership between our students and staff. In order to ensure your time at Lancaster is a positive experience we have worked with the Students’ Union to articulate this relationship and the standards to which the University and its students aspire. View our Charter and other policies.
Take five minutes and let us show you what Lancaster has to offer, from our beautiful green campus to our colleges, teaching and sports facilities.
Most first-year undergraduate students choose to live on campus, where you’ll find accommodation to suit different preferences and budgets.
Our historic city is student-friendly and home to a diverse and welcoming community. Beyond the city you'll find a stunning coastline and the picturesque Lake District.